Do you want to publish a course? Click here

Chemical modeling of Infrared Dark Clouds: the Role of Surface Chemistry

156   0   0.0 ( 0 )
 Added by Tatiana Vasyunina
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We simulate the chemistry of infrared dark clouds (IRDCs) with a model in which the physical conditions are homogeneous and time-independent. The chemistry is solved as a function of time with three networks: one purely gas-phase, one that includes accretion and desorption, and one, the complete gas-grain network, that includes surface chemistry in addition. We compare our results with observed molecular abundances for two representative IRDCs -- IRDC013.90-1 and IRDC321.73-1 -- using the molecular species N$_2$H$^+$, HC$_3$N, HNC, HCO$^+$, HCN, C$_2$H, NH$_3$ and CS. IRDC013.90-1 is a cold IRDC, with a temperature below 20 K, while IRDC321.73-1 is somewhat warmer, in the range 20 - 30 K. We find that the complete gas-grain model fits the data very well, but that the goodness-of-fit is not sharply peaked at a particular temperature. Surface processes are important for the explanation of the high gas-phase abundance of N$_2$H$^+$ in IRDC321.73-1. The general success of the 0-D model in reproducing single-dish observations of our limited sample of 8 species shows that it is probably sufficient for an explanation of this type of data. To build and justify more complicated models, including spatial temperature and density structure, contraction, and heating, we require high-resolution interferometric data.



rate research

Read More

Massive stars play an important role in shaping the structure of galaxies. Infrared dark clouds (IRDCs), with their low temperatures and high densities, have been identified as the potential birthplaces of massive stars. In order to understand the formation processes of massive stars the physical and chemical conditions in infrared dark clouds have to be characterized. The goal of this paper is to investigate the chemical composition of a sample of southern infrared dark clouds. One important aspect of the observations is to check, if the molecular abuncances in IRDCs are similar to the low-mass pre-stellar cores, or whether they show signatures of more evolved evolutionary stages. We performed observations toward 15 IRDCs in the frequency range between 86 and 93 GHz using the 22-m Mopra radio telescope. We detect HNC, HCO$^+$ and HNC emission in all clouds and N$_2$H$^+$ in all IRDCs except one. In some clouds we detect SiO emission. Complicated shapes of the HCO$^+$ emission line profile are found in all IRDCs. Both signatures indicates the presence of infall and outflow motions and beginning of star formation activity, at least in some parts of the IRDCs. Where possible, we calculate molecular abundances and make a comparison with previously obtained values for low-mass pre-stellar cores and high-mass protostellar objects (HMPOs). We show a tendency for IRDCs to have molecular abundances similar to low-mass pre-stellar cores rather than to HMPOs abundances on the scale of our single-dish observations.
124 - T. Vasyunina 2009
It is commonly assumed that cold and dense Infrared Dark Clouds (IRDCs) likely represent the birth sites massive stars. Therefore, this class of objects gets increasing attention. To enlarge the sample of well-characterised IRDCs in the southern hemisphere, we have set up a program to study the gas and dust of southern IRDCs. The present paper aims at characterizing the continuuum properties of this sample of objects. We cross-correlated 1.2 mm continuum data from SIMBA@SEST with Spitzer/GLIMPSE images to establish the connection between emission sources at millimeter wavelengths and the IRDCs we see at 8 $mu$m in absorption against the bright PAH background. Analysing the dust emission and extinction leads to a determination of masses and column densities, which are important quantities in characterizing the initial conditions of massive star formation. The total masses of the IRDCs were found to range from 150 to 1150 $rm M_odot$ (emission data) and from 300 to 1750 $rm M_odot$ (extinction data). We derived peak column densities between 0.9 and 4.6 $times 10^{22}$ cm$^{-2}$ (emission data) and 2.1 and 5.4 $times 10^{22}$ cm$^{-2}$ (extinction data). We demonstrate that the extinction method fails for very high extinction values (and column densities) beyond A$_{rm V}$ values of roughly 75 mag according to the Weingartner & Draine (2001) extinction relation $R_{rm V} = 5.5$ model B. The derived column densities, taking into account the spatial resolution effects, are beyond the column density threshold of 3.0 $times 10^{23}$ cm$^{-2}$ required by theoretical considerations for massive star formation. We conclude that the values for column densities derived for the selected IRDC sample make these objects excellent candidates for objects in the earliest stages of massive star formation.
It is currently assumed that infrared dark clouds (IRDCs) represent the earliest evolutionary stages of high-mass stars ($>$ 8 M$_{odot}$). Submillimeter and millimeter-wave studies performed over the past 15 years show that IRDCs possess a broad variety of properties, and hence a wide range of problems and questions that can be tackled. In this paper, we report an investigation of the molecular composition and chemical processes in two groups of IRDCs. Using the Mopra, APEX, and IRAM radio telescopes over the last four years, we have collected molecular line data for CO, H$_2$CO, HNCO, CH$_3$CCH, CH$_3$OH, CH$_3$CHO, CH$_3$OCHO, and CH$_3$OCH$_3$. For all of these species we estimated molecular abundances. We then undertook chemical modeling studies, concentrating on the source IRDC028.34+0.06, and compared observed and modeled abundances. This comparison showed that to reproduce observed abundances of complex organic molecules (COMs), a 0-D gas-grain model with constant physical conditions is not sufficient. We achieved greater success with the use of a warm-up model, in which warm-up from 10 K to 30 K occurs following a cold phase.
An ever growing number of observational and theoretical evidence suggests that the deuterated fraction (column density ratio between a species containing D and its hydrogenated counterpart, Dfrac) is an evolutionary indicator both in the low- and the high-mass star formation process. However, the role of surface chemistry in these studies has not been quantified from an observational point of view. In order to compare how the deuterated fractions of species formed only in the gas and partially or uniquely on grain surfaces evolve with time, we observed rotational transitions of CH3OH, 13CH3OH, CH2DOH, CH3OD at 3 and 1.3~mm, and of NH2D at 3~mm with the IRAM-30m telescope, and the inversion transitions (1,1) and (2,2) of NH3 with the GBT, towards most of the cores already observed by Fontani et al.~(2011, 2014) in N2H+, N2D+, HNC, DNC. NH2D is detected in all but two cores, regardless of the evolutionary stage. Dfrac(NH3) is on average above 0.1, and does not change significantly from the earliest to the most evolved phases, although the highest average value is found in the protostellar phase (~0.3). Few lines of CH2DOH and CH3OD are clearly detected, and only towards protostellar cores or externally heated starless cores. This work clearly confirms an expected different evolutionary trend of the species formed exclusively in the gas (N2D+ and N2H+) and those formed partially (NH2D and NH3) or totally (CH2DOH and CH3OH) on grain mantles. The study also reinforces the idea that Dfrac(N2H+) is the best tracer of massive starless cores, while high values of Dfrac(CH3OH) seem rather good tracers of the early protostellar phases, at which the evaporation/sputtering of the grain mantles is most efficient.
137 - Catherine Walsh 2009
We have investigated the role of molecular anion chemistry in pseudo-time dependent chemical models of dark clouds. With oxygen-rich elemental abundances, the addition of anions results in a slight improvement in the overall agreement between model results and observations of molecular abundances in TMC-1 (CP). More importantly, with the inclusion of anions, we see an enhanced production efficiency of unsaturated carbon-chain neutral molecules, especially in the longer members of the families CnH, CnH2, and HCnN. The use of carbon-rich elemental abundances in models of TMC-1 (CP) with anion chemistry worsens the agreement with observations obtained in the absence of anions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا