Do you want to publish a course? Click here

Deuteration and evolution in the massive star formation process: the role of surface chemistry

346   0   0.0 ( 0 )
 Added by Francesco Fontani
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

An ever growing number of observational and theoretical evidence suggests that the deuterated fraction (column density ratio between a species containing D and its hydrogenated counterpart, Dfrac) is an evolutionary indicator both in the low- and the high-mass star formation process. However, the role of surface chemistry in these studies has not been quantified from an observational point of view. In order to compare how the deuterated fractions of species formed only in the gas and partially or uniquely on grain surfaces evolve with time, we observed rotational transitions of CH3OH, 13CH3OH, CH2DOH, CH3OD at 3 and 1.3~mm, and of NH2D at 3~mm with the IRAM-30m telescope, and the inversion transitions (1,1) and (2,2) of NH3 with the GBT, towards most of the cores already observed by Fontani et al.~(2011, 2014) in N2H+, N2D+, HNC, DNC. NH2D is detected in all but two cores, regardless of the evolutionary stage. Dfrac(NH3) is on average above 0.1, and does not change significantly from the earliest to the most evolved phases, although the highest average value is found in the protostellar phase (~0.3). Few lines of CH2DOH and CH3OD are clearly detected, and only towards protostellar cores or externally heated starless cores. This work clearly confirms an expected different evolutionary trend of the species formed exclusively in the gas (N2D+ and N2H+) and those formed partially (NH2D and NH3) or totally (CH2DOH and CH3OH) on grain mantles. The study also reinforces the idea that Dfrac(N2H+) is the best tracer of massive starless cores, while high values of Dfrac(CH3OH) seem rather good tracers of the early protostellar phases, at which the evaporation/sputtering of the grain mantles is most efficient.



rate research

Read More

The chemical evolution in high-mass star-forming regions is still poorly constrained. Studying the evolution of deuterated molecules allows to differentiate between subsequent stages of high-mass star formation regions due to the strong temperature dependence of deuterium isotopic fractionation. We observed a sample of 59 sources including 19 infrared dark clouds, 20 high-mass protostellar objects, 11 hot molecular cores and 9 ultra-compact HII regions in the (3-2) transitions of the four deuterated molecules, DCN, DNC, DCO+ and N2D+ as well as their non-deuterated counterpart. The overall detection fraction of DCN, DNC and DCO+ is high and exceeds 50% for most of the stages. N2D+ was only detected in a few infrared dark clouds and high-mass protostellar objects. It can be related to problems in the bandpass at the frequency of the transition and to low abundances in the more evolved, warmer stages. We find median D/H ratios of ~0.02 for DCN, ~0.005 for DNC, ~0.0025 for DCO+ and ~0.02 for N2D+. While the D/H ratios of DNC, DCO+ and N2D+ decrease with time, DCN/HCN peaks at the hot molecular core stage. We only found weak correlations of the D/H ratios for N2D+ with the luminosity of the central source and the FWHM of the line, and no correlation with the H2 column density. In combination with a previously observed set of 14 other molecules (Paper I) we fitted the calculated column densities with an elaborate 1D physico-chemical model with time-dependent D-chemistry including ortho- and para-H2 states. Good overall fits to the observed data have been obtained the model. It is one of the first times that observations and modeling have been combined to derive chemically based best-fit models for the evolution of high-mass star formation including deuteration.
(Abridged) Understanding the details of the formation process of massive (i.e. M<8-10M$_odot$) stars is a long-standing problem in astrophysics. [...] We present a method to derive accurate timescales of the different evolutionary phases of the high-mass star formation process. We model a representative number of massive clumps of the ATLASGAL-TOP100 sample which cover all the evolutionary stages. The models describe an isothermal collapse and the subsequent warm-up phase, for which we follow their chemical evolution. The timescale of each phase is derived by comparing the results of the models with the properties of the sources of the ATLASGAL-TOP100 sample, taking into account the mass and luminosity of the clumps, and the column densities of methyl acetylene (CH$_3$CCH), acetonitrile (CH$_3$CN), formaldehyde (H$_2$CO) and methanol (CH$_3$OH). We find that the chosen molecular tracers are affected by the thermal evolution of the clumps, showing steep ice evaporation gradients from 10$^3$ to 10$^5$ AU during the warm-up phase. We succeed in reproducing the observed column densities of CH$_3$CCH and CH$_3$CN, while H$_2$CO and CH$_3$OH show a poorer agreement with the observed values. The total (massive) star formation time is found to be $sim5.2times10^5$ yr, which is defined by the timescales of the individual evolutionary phases of the ATLASGAL-TOP100 sample: $sim5times10^4$ yr for 70-$mu$m weak, $sim1.2times10^5$ yr for mid-IR weak, $sim2.4times10^5$ yr for mid-IR bright and $sim1.1times10^5$ yr for HII-regions phases. Our models, with an appropriate selection of molecular tracers that can act as chemical clocks, allow to get robust estimates of the duration of the individual phases of the high-mass star formation process, with the advantage of being capable to include additional tracers aimed at increasing the accuracy of the estimated timescales.
Recent observations of the HDO/H$_2$O ratio toward protostars in isolated and clustered environments show an apparent dichotomy, where isolated sources show higher D/H ratios than clustered counterparts. Establishing which physical and chemical processes create this differentiation can provide insights into the chemical evolution of water during star formation and the chemical diversity during the star formation process and in young planetary systems. Methods: The evolution of water is modeled using 3D physicochemical models of a dynamic star-forming environment. The physical evolution during the protostellar collapse is described by tracer particles from a 3D MHD simulation of a molecular cloud region. Each particle trajectory is post-processed using RADMC-3D to calculate the temperature and radiation field. The chemical evolution is simulated using a three-phase grain-surface chemistry model and the results are compared with interferometric observations of H$_2$O, HDO, and D$_2$O in hot corinos toward low-mass protostars. Results: The physicochemical model reproduces the observed HDO/H$_2$O and D$_2$O/HDO ratios in hot corinos, but shows no correlation with cloud environment for similar identical conditions. The observed dichotomy in water D/H ratios requires variation in the initial conditions (e.g., the duration and temperature of the prestellar phase). Reproducing the observed D/H ratios in hot corinos requires a prestellar phase duration $tsim$1-3 Myr and temperatures in the range $T sim$ 10-20 K prior to collapse. This work demonstrates that the observed differentiation between clustered and isolated protostars stems from differences in the molecular cloud or prestellar core conditions and does not arise during the protostellar collapse itself.
Stellar feedback in the form of radiation pressure and magnetically-driven collimated outflows may limit the maximum mass that a star can achieve and affect the star-formation efficiency of massive pre-stellar cores. Here we present a series of 3D adaptive mesh refinement radiation-magnetohydrodynamic simulations of the collapse of initially turbulent, massive pre-stellar cores. Our simulations include radiative feedback from both the direct stellar and dust-reprocessed radiation fields, and collimated outflow feedback from the accreting stars. We find that protostellar outflows punches holes in the dusty circumstellar gas along the stars polar directions, thereby increasing the size of optically thin regions through which radiation can escape. Precession of the outflows as the stars spin axis changes due to the turbulent accretion flow further broadens the outflow, and causes more material to be entrained. Additionally, the presence of magnetic fields in the entrained material leads to broader entrained outflows that escape the core. We compare the injected and entrained outflow properties and find that the entrained outflow mass is a factor of $sim$3 larger than the injected mass and the momentum and energy contained in the entrained material are $sim$25% and $sim$5% of the injected momentum and energy, respectively. As a result, we find that, when one includes both outflows and radiation pressure, the former are a much more effective and important feedback mechanism, even for massive stars with significant radiative outputs.
Understanding the chemical evolution of young (high-mass) star-forming regions is a central topic in star formation research. Chemistry is employed as a unique tool 1) to investigate the underlying physical processes and 2) to characterize the evolution of the chemical composition. We observed a sample of 59 high-mass star-forming regions at different evolutionary stages varying from the early starless phase of infrared dark clouds to high-mass protostellar objects to hot molecular cores and, finally, ultra-compact HII regions at 1mm and 3mm with the IRAM 30m telescope. We determined their large-scale chemical abundances and found that the chemical composition evolves along with the evolutionary stages. On average, the molecular abundances increase with time. We modeled the chemical evolution, using a 1D physical model where density and temperature vary from stage to stage coupled with an advanced gas-grain chemical model and derived the best-fit chi^2 values of all relevant parameters. A satisfying overall agreement between observed and modeled column densities for most of the molecules was obtained. With the best-fit model we also derived a chemical age for each stage, which gives the timescales for the transformation between two consecutive stages. The best-fit chemical ages are ~10,000 years for the IRDC stage, ~60,000 years for the HMPO stage, ~40,000 years for the HMC stage, and ~10,000 years for the UCHII stage. The total chemical timescale for the entire evolutionary sequence of the high-mass star formation process is on the order of 10^5 years, which is consistent with theoretical estimates. Furthermore, based on the approach of a multiple-line survey of unresolved data, we were able to constrain an intuitive and reasonable physical and chemical model. The results of this study can be used as chemical templates for the different evolutionary stages in high-mass star formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا