Do you want to publish a course? Click here

The Morphology of Hadronic Emission Models for the Gamma-Ray Source at the Galactic Center

213   0   0.0 ( 0 )
 Added by Tim Linden
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, detections of a high-energy gamma-ray source at the position of the Galactic center have been reported by multiple gamma-ray telescopes, spanning the energy range between 100 MeV and 100 TeV. Analysis of these signals strongly suggests the TeV emission to have a morphology consistent with a point source up to the angular resolution of the HESS telescope (approximately 3 pc), while the point-source nature of the GeV emission is currently unsettled, with indications that it may be spatially extended. In the case that the emission is hadronic and in a steady state, we show that the expected gamma-ray morphology is dominated by the distribution of target gas, rather than by details of cosmic-ray injection and propagation. Specifically, we expect a significant portion of hadronic emission to coincide with the position of the circum-nuclear ring, which resides between 1-3 pc from the Galactic center. We note that the upcoming Cherenkov Telescope Array (CTA) will be able to observe conclusive correlations between the morphology of the TeV gamma-ray source and the observed gas density, convincingly confirming or ruling out a hadronic origin for the gamma-ray emission.



rate research

Read More

Studies of Fermi data indicate an excess of GeV gamma rays around the Galactic center (GC), possibly due to dark matter. We show that young gamma-ray pulsars can yield a similar signal. First, a high concentration of GC supernovae naturally leads to a population of kicked pulsars symmetric about the GC. Second, while very-young pulsars with soft spectra reside near the Galactic plane, pulsars with spectra that have hardened with age accumulate at larger angles. This combination, including unresolved foreground pulsars, traces the morphology and spectrum of the Excess.
We construct empirical models of the diffuse gamma-ray background toward the Galactic Center. Including all known point sources and a template of emission associated with interactions of cosmic rays with molecular gas, we show that the extended emission observed previously in the Fermi Large Area Telescope data toward the Galactic Center is detected at high significance for all permutations of the diffuse model components. However, we find that the fluxes and spectra of the sources in our model change significantly depending on the background model. In particular, the spectrum of the central Sgr A$^ast$ source is less steep than in previous works and the recovered spectrum of the extended emission has large systematic uncertainties, especially at lower energies. If the extended emission is interpreted to be due to dark matter annihilation, we find annihilation into pure $b$-quark and $tau$-lepton channels to be statistically equivalent goodness of fits. In the case of the pure $b$-quark channel, we find a dark matter mass of $39.4left(^{+3.7}_{-2.9}rm stat.right)left(pm 7.9rm sys.right)rm GeV$, while a pure $tau^{+} tau^{-}$-channel case has an estimated dark matter mass of $9.43left(^{+0.63}_{-0.52}rm stat.right)(pm 1.2rm sys.) GeV$. Alternatively, if the extended emission is interpreted to be astrophysical in origin such as due to unresolved millisecond pulsars, we obtain strong bounds on dark matter annihilation, although systematic uncertainties due to the dependence on the background models are significant.
Gamma-ray observations have shown pulsars to be efficient converters of rotational energy into GeV photons and it is of wide-ranging interest to determine their contribution to the gamma-ray background. We arrive at flux predictions from both the young (<~ Myr) and millisecond (~Gyr) Galactic pulsar populations. We find that unresolved pulsars can yield both a significant fraction of the excess GeV gamma rays near the Galactic Center and an inverse Compton flux in the inner kpc similar to that inferred by Fermi. We compare models of the young pulsar population and millisecond pulsar population to constraints from gamma-ray and radio observations. Overall, we find that the young pulsars should outnumber millisecond pulsars as unassociated gamma-ray point sources in this region. The number of young radio pulsars discovered near the Galactic Center is in agreement with our model of the young pulsar population. Deeper radio observations at higher latitudes can constrain the total gamma-ray emission from both young and millisecond pulsars from the inner galaxy. While this is a step towards better understanding of pulsars, cosmic rays in the Milky Way, and searches for dark matter, we also discuss a few interesting puzzles that arise from the underlying physics of pulsar emission and evolution.
305 - Xiao Zhang 2012
Hadronic gamma-ray emission from supernova remnants (SNRs) is an important tool to test shock acceleration of cosmic ray protons. Tycho is one of nearly a dozen Galactic SNRs which are suggested to emit hadronic gamma-ray emission. Among them, however, it is the only one in which the hadronic emission is proposed to arise from the interaction with low-density (~0.3 cm^{-3}) ambient medium. Here we present an alternative hadronic explanation with a modest conversion efficiency (of order 1%) for this young remnant. With such an efficiency, a normal electron-proton ratio (of order 10^{-2}) is derived from the radio and X-ray synchrotron spectra and an average ambient density that is at least one-order-of-magnitude higher is derived from the hadronic gamma-ray flux. This result is consistent with the multi-band evidence of the presence of dense medium from the north to the east of the Tycho SNR. The SNR-cloud association, in combination with the HI absorption data, helps to constrain the so-far controversial distance to Tycho and leads to an estimate of 2.5 kpc.
Recent observations of gamma-rays with the Fermi Large Area Telescope (LAT) in the direction of the inner Galaxy revealed a mysterious GeV excess. Its intensity is significantly above predictions of the standard model of cosmic rays (CRs) generation and propagation with a peak in the spectrum around a few GeV. Popular interpretations of this excess are due to either spherically distributed annihilating dark matter (DM) or abnormal population of millisecond pulsars. We suggested an alternative explanation of the excess through the CR interactions with molecular clouds in the Galactic Center (GC) region. We assumed that the excess could be imitated by the emission of molecular clouds with depleted density of CRs with energies below ~ 10 GeV inside. A novelty of our work is in detailed elaboration of the depletion mechanism of CRs with the mentioned energies through the barrier near the cloud edge formed by the self-excited MHD turbulence. Such depletion of CRs inside the clouds may be a reason of deficit of gamma rays from the Central Molecular Zone (CMZ) at energies below few GeV. This in turn changes the ratio between various emission components at those energies, and may potentially absorb the GeV excess by simple renormalization of key components.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا