Do you want to publish a course? Click here

Young and Millisecond Pulsar GeV Gamma-ray Fluxes from the Galactic Center and Beyond

63   0   0.0 ( 0 )
 Added by Ryan O'Leary
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gamma-ray observations have shown pulsars to be efficient converters of rotational energy into GeV photons and it is of wide-ranging interest to determine their contribution to the gamma-ray background. We arrive at flux predictions from both the young (<~ Myr) and millisecond (~Gyr) Galactic pulsar populations. We find that unresolved pulsars can yield both a significant fraction of the excess GeV gamma rays near the Galactic Center and an inverse Compton flux in the inner kpc similar to that inferred by Fermi. We compare models of the young pulsar population and millisecond pulsar population to constraints from gamma-ray and radio observations. Overall, we find that the young pulsars should outnumber millisecond pulsars as unassociated gamma-ray point sources in this region. The number of young radio pulsars discovered near the Galactic Center is in agreement with our model of the young pulsar population. Deeper radio observations at higher latitudes can constrain the total gamma-ray emission from both young and millisecond pulsars from the inner galaxy. While this is a step towards better understanding of pulsars, cosmic rays in the Milky Way, and searches for dark matter, we also discuss a few interesting puzzles that arise from the underlying physics of pulsar emission and evolution.



rate research

Read More

Studies of Fermi data indicate an excess of GeV gamma rays around the Galactic center (GC), possibly due to dark matter. We show that young gamma-ray pulsars can yield a similar signal. First, a high concentration of GC supernovae naturally leads to a population of kicked pulsars symmetric about the GC. Second, while very-young pulsars with soft spectra reside near the Galactic plane, pulsars with spectra that have hardened with age accumulate at larger angles. This combination, including unresolved foreground pulsars, traces the morphology and spectrum of the Excess.
A new measurement of a spatially extended gamma-ray signal from the center of the Andromeda galaxy (M31) has been recently published by the Fermi-LAT collaboration, reporting that the emission broadly resembles the so-called Galactic center excess (GCE) of the Milky Way (MW). At the same time, evidence is accumulating on a millisecond pulsar (MSPs) origin for the GCE. These elements prompt us to compare the mentioned observations with what is, perhaps, the simplest model for an MSP population, solely obtained by rescaling of the MSP luminosity function determined in the local MW disk via the respective stellar mass of the systems. It is remarkable that without free fitting parameters, this model can account for both the energetics and the morphology of the GCE within uncertainties. For M31, the estimated luminosity due to primordial MSPs is expected to contribute only about a quarter of the detected emission, although a dominant contribution cannot be excluded given the large uncertainties. If correct, the model predicts that the M31 disk emission due to MSP is not far below the present upper bound. We also discuss a few refinements of this simple model. In particular, we use the correlation between globular cluster gamma-ray luminosity and stellar encounter rate to gauge the dynamical MSP formation in the bulge. This component is expected to contribute to the GCE only at a level $lesssim 5%$, but it may be of some importance in explaining the signals morphology in the inner region of the Galaxy. We also comment on some effects which may lead to violations of the simple scaling used, on alternative models, and on future perspectives for improved diagnostics.
Millisecond pulsars, old neutron stars spun-up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such recycled rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.
We construct empirical models of the diffuse gamma-ray background toward the Galactic Center. Including all known point sources and a template of emission associated with interactions of cosmic rays with molecular gas, we show that the extended emission observed previously in the Fermi Large Area Telescope data toward the Galactic Center is detected at high significance for all permutations of the diffuse model components. However, we find that the fluxes and spectra of the sources in our model change significantly depending on the background model. In particular, the spectrum of the central Sgr A$^ast$ source is less steep than in previous works and the recovered spectrum of the extended emission has large systematic uncertainties, especially at lower energies. If the extended emission is interpreted to be due to dark matter annihilation, we find annihilation into pure $b$-quark and $tau$-lepton channels to be statistically equivalent goodness of fits. In the case of the pure $b$-quark channel, we find a dark matter mass of $39.4left(^{+3.7}_{-2.9}rm stat.right)left(pm 7.9rm sys.right)rm GeV$, while a pure $tau^{+} tau^{-}$-channel case has an estimated dark matter mass of $9.43left(^{+0.63}_{-0.52}rm stat.right)(pm 1.2rm sys.) GeV$. Alternatively, if the extended emission is interpreted to be astrophysical in origin such as due to unresolved millisecond pulsars, we obtain strong bounds on dark matter annihilation, although systematic uncertainties due to the dependence on the background models are significant.
We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا