Do you want to publish a course? Click here

Damping rates of solar-like oscillations across the HR diagram. Theoretical calculations confronted to CoRoT and Kepler observations

165   0   0.0 ( 0 )
 Added by Kevin Belkacem
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Space-borne missions CoRoT and {it Kepler} are providing a rich harvest of high-quality constraints on solar-like pulsators. Among the seismic parameters, mode damping rates remains poorly understood and thus barely used to infer physical properties of stars. Nevertheless, thanks to CoRoT and {it Kepler} space-crafts it is now possible to measure damping rates for hundreds of main-sequence and thousands of red-giant stars with an unprecedented precision. By using a non-adiabatic pulsation code including a time-dependent convection treatment, we compute damping rates for stellar models representative for solar-like pulsators from the main-sequence to the red-giant phase. This allows us to reproduce the observations of both CoRoT and {it Kepler}, which validates our modeling of mode damping rates and thus the underlying physical mechanisms included in the modeling. Actually, by considering the perturbations of turbulent pressure and entropy (including perturbation of the dissipation rate of turbulent energy into heat) by the oscillation in our computation, we succeed in reproducing the observed relation between damping rates and effective temperature. Moreover, we discuss the physical reasons for mode damping rates to scale with effective temperature, as observationally exhibited. Finally, this opens the way for the use of mode damping rates to probe turbulent convection in solar-like stars.



rate research

Read More

The last decade has seen a rapid development in asteroseismology thanks to the CoRoT and Kepler missions. With more detailed asteroseismic observations available, it is becoming possible to infer exactly how oscillations are driven and dissipated in solar-type stars. We have carried out three-dimensional (3D) stellar atmosphere simulations together with one-dimensional (1D) stellar structural models of key benchmark turn-off and subgiant stars to study this problem from a theoretical perspective. Mode excitation and damping rates are extracted from 3D and 1D stellar models based on analytical expressions. Mode velocity amplitudes are determined by the balance between stochastic excitation and linear damping, which then allows the estimation of the frequency of maximum oscillation power, $ u_{max}$, for the first time based on ab initio and parameter-free modelling. We have made detailed comparisons between our numerical results and observational data and achieved very encouraging agreement for all of our target stars. This opens the exciting prospect of using such realistic 3D hydrodynamical stellar models to predict solar-like oscillations across the HR-diagram, thereby enabling accurate estimates of stellar properties such as mass, radius and age.
123 - L. A. Balona 2020
Kepler short-cadence photometry of 2347 stars with effective temperatures in the range 6000-10000 K was used to search for the presence of solar-like oscillations. The aim is to establish the location of the hot end of the stochastic convective excitation mechanism and to what extent it may overlap the delta Scuti/gamma Doradus instability region. A simple but effective autocorrelation method is described which is capable of detecting low-amplitude solar-like oscillations, but with significant risk of a false detection. The location of the frequency of maximum oscillation power, $ u_{rm max}$, and the large frequency separation, $Delta u$, is determined for 167 stars hotter than 6000 K, of which 70 are new detections. Results indicate that the hot edge of excitation of solar-like oscillations does not appear to extend into the delta Scuti/gamma Doradus instability strip.
The CoRoT mission is in its third year of observation and the data from the second long run in the galactic centre direction are being analysed. The solar-like oscillating stars that have been observed up to now have given some interesting results, specially concerning the amplitudes that are lower than predicted. We present here the results from the analysis of the star HD 170987.The goal of this research work is to characterise the global parameters of HD 170987. We look for global seismic parameters such as the mean large separation, maximum amplitude of the modes, and surface rotation because the signal-to-noise ratio in the observations do not allow us to measure individual modes. We also want to retrieve the stellar parameters of the star and its chemical composition.We have studied the chemical composition of the star using ground-based observations performed with the NARVAL spectrograph. We have used several methods to calculate the global parameters from the acoustic oscillations based on CoRoT data. The light curve of the star has been interpolated using inpainting algorithms to reduce the effect of data gaps. We find power excess related to p modes in the range [400 - 1200]muHz with a mean large separation of 55.2+-0.8muHz with a probability above 95% that increases to 55.9 +-0.2muHz in a higher frequency range [500 - 1250] muHz and a rejection level of 1%. A hint of the variation of this quantity with frequency is also found. The rotation period of the star is estimated to be around 4.3 days with an inclination axis of i=50 deg +20/-13. We measure a bolometric amplitude per radial mode in a range [2.4 - 2.9] ppm around 1000 muHz. Finally, using a grid of models, we estimate the stellar mass, M=1.43+-0.05 Msun, the radius, R=1.96+-0.046 Rsun, and the age ~2.4 Gyr.
Asteroseismology is a powerful tool that can precisely characterize the mass, radius, and other properties of field stars. However, our inability to properly model the near-surface layers of stars creates a frequency-dependent frequency difference between the observed and the modeled frequencies, usually referred to as the surface term. This surface term can add significant errors to the derived stellar properties unless removed properly. In this paper we simulate surface terms across a significant portion of the HR diagram, exploring four different masses ($M=0.8, 1.0, 1.2$, and $1.5$ M$_odot$) at five metallicities ($[rm{Fe/H}]=0.5, 0.0, -0.5 ,-1.0, and -1.5$) from main sequence to red giants for stars with $T_{rm{eff}}<6500 K$ and explore how well the most common ways of fitting and removing the surface term actually perform. We find that the two-term model proposed by Ball & Gizon (2014) works much better than other models across a large portion of the HR diagram, including the red giants, leading us to recommend its use for future asteroseismic analyses.
Context: The F8 star HD 181906 (effective temperature ~6300K) was observed for 156 days by the CoRoT satellite during the first long run in the centre direction. Analysis of the data reveals a spectrum of solar-like acoustic oscillations. However, the faintness of the target (m_v=7.65) means the signal-to-noise (S/N) in the acoustic modes is quite low, and this low S/N leads to complications in the analysis. Aims: To extract global variables of the star as well as key parameters of the p modes observed in the power spectrum of the lightcurve. Methods: The power spectrum of the lightcurve, a wavelet transform and spot fitting have been used to obtain the average rotation rate of the star and its inclination angle. Then, the autocorrelation of the power spectrum and the power spectrum of the power spectrum were used to properly determine the large separation. Finally, estimations of the mode parameters have been done by maximizing the likelihood of a global fit, where several modes were fit simultaneously. Results: We have been able to infer the mean surface rotation rate of the star (~4 microHz) with indications of the presence of surface differential rotation, the large separation of the p modes (~87 microHz), and therefore also the ridges corresponding to overtones of the acoustic modes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا