Do you want to publish a course? Click here

Solar-like oscillations with low amplitude in the CoRoT target HD 181906

236   0   0.0 ( 0 )
 Added by Rafael A. Garcia
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: The F8 star HD 181906 (effective temperature ~6300K) was observed for 156 days by the CoRoT satellite during the first long run in the centre direction. Analysis of the data reveals a spectrum of solar-like acoustic oscillations. However, the faintness of the target (m_v=7.65) means the signal-to-noise (S/N) in the acoustic modes is quite low, and this low S/N leads to complications in the analysis. Aims: To extract global variables of the star as well as key parameters of the p modes observed in the power spectrum of the lightcurve. Methods: The power spectrum of the lightcurve, a wavelet transform and spot fitting have been used to obtain the average rotation rate of the star and its inclination angle. Then, the autocorrelation of the power spectrum and the power spectrum of the power spectrum were used to properly determine the large separation. Finally, estimations of the mode parameters have been done by maximizing the likelihood of a global fit, where several modes were fit simultaneously. Results: We have been able to infer the mean surface rotation rate of the star (~4 microHz) with indications of the presence of surface differential rotation, the large separation of the p modes (~87 microHz), and therefore also the ridges corresponding to overtones of the acoustic modes.



rate research

Read More

The CoRoT mission is in its third year of observation and the data from the second long run in the galactic centre direction are being analysed. The solar-like oscillating stars that have been observed up to now have given some interesting results, specially concerning the amplitudes that are lower than predicted. We present here the results from the analysis of the star HD 170987.The goal of this research work is to characterise the global parameters of HD 170987. We look for global seismic parameters such as the mean large separation, maximum amplitude of the modes, and surface rotation because the signal-to-noise ratio in the observations do not allow us to measure individual modes. We also want to retrieve the stellar parameters of the star and its chemical composition.We have studied the chemical composition of the star using ground-based observations performed with the NARVAL spectrograph. We have used several methods to calculate the global parameters from the acoustic oscillations based on CoRoT data. The light curve of the star has been interpolated using inpainting algorithms to reduce the effect of data gaps. We find power excess related to p modes in the range [400 - 1200]muHz with a mean large separation of 55.2+-0.8muHz with a probability above 95% that increases to 55.9 +-0.2muHz in a higher frequency range [500 - 1250] muHz and a rejection level of 1%. A hint of the variation of this quantity with frequency is also found. The rotation period of the star is estimated to be around 4.3 days with an inclination axis of i=50 deg +20/-13. We measure a bolometric amplitude per radial mode in a range [2.4 - 2.9] ppm around 1000 muHz. Finally, using a grid of models, we estimate the stellar mass, M=1.43+-0.05 Msun, the radius, R=1.96+-0.046 Rsun, and the age ~2.4 Gyr.
165 - S. Mathur , H. Bruntt , C. Catala 2013
The satellite CoRoT (Convection, Rotation, and planetary Transits) has provided high-quality data for almost six years. We show here the asteroseismic analysis and modeling of HD169392A, which belongs to a binary system weakly gravitationally bound as the distance between the two components is of 4250 AU. The main component, HD169392A, is a G0IV star with a magnitude of 7.50 while the second component is a G0V-G2IV star with a magnitude of 8.98. This analysis focuses on the main component, as the secondary one is too faint to measure any seismic parameters. A complete modeling has been possible thanks to the complementary spectroscopic observations from HARPS, providing Teff=5985+/-60K, log g=3.96+/-0.07, and [Fe/H]=- 0.04+/-0.10.
{We aim to detect and interpret photometric and spectroscopic variability of the bright CoRoT B-type supergiant target HD,46769 ($V=5.79$). We also attempt to detect a magnetic field in the target.} {We analyse a 23-day oversampled CoRoT light curve after detrending, as well as spectroscopic follow-up data, by using standard Fourier analysis and Phase Dispersion Minimization methods. We determine the fundamental parameters of the star, as well as its abundances from the most prominent spectral lines. We perform a Monte Carlo analysis of spectropolarimetric data to obtain an upper limit of the polar magnetic field, assumping a dipole field.} {In the CoRoT data, we detect a dominant period of 4.84,d with an amplitude of 87,ppm, and some of its (sub-)multiples. Given the shape of the phase-folded light curve and the absence of binary motion, we interpret the dominant variability in terms of rotational modulation, with a rotation period of 9.69,d. Subtraction of the rotational modulation signal does not reveal any sign of pulsations. Our results are consistent with the absence of variability in the Hipparcos light curve. The spectroscopy leads to a projected rotational velocity of 72$pm 2$,km,s$^{-1}$ and does not reveal periodic variability nor the need to invoke macroturbulent line broadening. No signature of a magnetic field is detected in our data. A field stronger than $sim 500$,G at the poles can be excluded, unless the possible non-detected field were more complex than dipolar.} {The absence of pulsations and of macroturbulence of this evolved B-type supergiant is placed into context of instability computations and of observed variability of evolved B-type stars.}
We present the results of the asteroseismic analysis of the red-giant star KIC 4351319 (TYC 3124-914-1), observed for 30 days in short-cadence mode with the Kepler satellite. The analysis has allowed us to determine the large and small frequency separations, and the frequency of maximum oscillation power. The high signal-to-noise ratio of the observations allowed us to identify 25 independent pulsation modes whose frequencies range approximately from 300 to 500 muHz. The observed oscillation frequencies together with the accurate determination of the atmospheric parameters (effective temperature, gravity and metallicity), provided by additional ground-based spectroscopic observations, enabled us to theoretically interpret the observed oscillation spectrum. KIC 4351319 appears to oscillate with a well defined solar-type p-modes pattern due to radial acoustic modes and non-radial nearly pure p modes. In addition, several non-radial mixed modes have been identified. Theoretical models well reproduce the observed oscillation frequencies and indicate that this star, located at the base of the ascending red-giant branch, is in the hydrogen-shell burning phase, with a mass of about 1.3 solar masses, a radius of about 3.4 solar radii and an age of about 5.6 Gyr. The main parameters of this star have been determined with an unprecedent level of precision for a red-giant star, with uncertainties of 2% for mass, 7% for age, 1% for radius, and 4% for luminosity.
From the seismic data obtained by CoRoT for the star HD 49933 it is possible, as for the Sun, to constrain models of the excitation of acoustic modes by turbulent convection. We compare a stochastic excitation model described in Paper I (arXiv:0910.4027) with the asteroseismology data for HD 49933, a star that is rather metal poor and significantly hotter than the Sun. Using the mode linewidths measured by CoRoT for HD 49933 and the theoretical mode excitation rates computed in Paper I, we derive the expected surface velocity amplitudes of the acoustic modes detected in HD 49933. Using a calibrated quasi-adiabatic approximation relating the mode amplitudes in intensity to those in velocity, we derive the expected values of the mode amplitude in intensity. Our amplitude calculations are within 1-sigma error bars of the mode surface velocity spectrum derived with the HARPS spectrograph. The same is found with the mode amplitudes in intensity derived for HD 49933 from the CoRoT data. On the other hand, at high frequency, our calculations significantly depart from the CoRoT and HARPS measurements. We show that assuming a solar metal abundance rather than the actual metal abundance of the star would result in a larger discrepancy with the seismic data. Furthermore, calculations that assume the ``new solar chemical mixture are in better agreement with the seismic data than those that assume the ``old solar chemical mixture. These results validate, in the case of a star significantly hotter than the Sun and Alpha Cen A, the main assumptions in the model of stochastic excitation. However, the discrepancies seen at high frequency highlight some deficiencies of the modelling, whose origin remains to be understood.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا