No Arabic abstract
We introduce explicit combinatorial interpretations for the coefficients in some of the transition matrices relating to skew Hall-Littlewood polynomials P_lambda/mu(x;t) and Hiverts quasisymmetric Hall-Littlewood polynomials G_gamma(x;t). More specifically, we provide: 1) the G-expansions of the Hall-Littlewood polynomials P_lambda, the monomial quasisymmetric polynomials M_alpha, the quasisymmetric Schur polynomials S_alpha, and the peak quasisymmetric functions K_alpha; 2) an expansion of P_lambda/mu in terms of the F_alphas. The F-expansion of P_lambda/mu is facilitated by introducing starred tableaux.
For any triple $(i,a,mu)$ consisting of a vertex $i$ in a quiver $Q$, a positive integer $a$, and a dominant $GL_a$-weight $mu$, we define a quiver current $H^{(i,a)}_mu$ acting on the tensor power $Lambda^Q$ of symmetric functions over the vertices of $Q$. These provide a quiver generalization of parabolic Garsia-Jing creation operators in the theory of Hall-Littlewood symmetric functions. For a triple $(mathbf{i},mathbf{a},mu(bullet))$ of sequences of such data, we define the quiver Hall-Littlewood function $H^{mathbf{i},mathbf{a}}_{mu(bullet)}$ as the result of acting on $1inLambda^Q$ by the corresponding sequence of quiver currents. The quiver Kostka-Shoji polynomials are the expansion coefficients of $H^{mathbf{i},mathbf{a}}_{mu(bullet)}$ in the tensor Schur basis. These polynomials include the Kostka-Foulkes polynomials and parabolic Kostka polynomials (Jordan quiver) and the Kostka-Shoji polynomials (cyclic quiver) as special cases. We show that the quiver Kostka-Shoji polynomials are graded multiplicities in the equivariant Euler characteristic of a vector bundle on Lusztigs convolution diagram determined by the sequences $mathbf{i},mathbf{a}$. For certain compositions of currents we conjecture higher cohomology vanishing of the associated vector bundle on Lusztigs convolution diagram. For quivers with no branching we propose an explicit positive formula for the quiver Kostka-Shoji polynomials in terms of catabolizable multitableaux. We also relate our constructions to $K$-theoretic Hall algebras, by realizing the quiver Kostka-Shoji polynomials as natural structure constants and showing that the quiver currents provide a symmetric function lifting of the corresponding shuffle product. In the case of a cyclic quiver, we explain how the quiver currents arise in Saitos vertex representation of the quantum toroidal algebra of type $mathfrak{sl}_r$.
In this paper, we prove formulas for the action of Virasoro operators on Hall-Littlewood polynomials at roots of unity.
We introduce a family of rings of symmetric functions depending on an infinite sequence of parameters. A distinguished basis of such a ring is comprised by analogues of the Schur functions. The corresponding structure coefficients are polynomials in
We investigate polynomials, called m-polynomials, whose generator polynomial has coefficients that can be arranged as a matrix, where q is a positive integer greater than one. Orthogonality relations are established and coefficients are obtained for the expansion of a polynomial in terms of m-polynomials. We conclude this article by an implementation in MATHEMATICA of m-polynomials and the results obtained for them.
Given a set of permutations Pi, let S_n(Pi) denote the set of permutations in the symmetric group S_n that avoid every element of Pi in the sense of pattern avoidance. Given a subset S of {1,...,n-1}, let F_S be the fundamental quasisymmetric function indexed by S. Our object of study is the generating function Q_n(Pi) = sum F_{Des sigma} where the sum is over all sigma in S_n(Pi) and Des sigma is the descent set of sigma. We characterize those Pi contained in S_3 such that Q_n(Pi) is symmetric or Schur nonnegative for all n. In the process, we show how each of the resulting Pi can be obtained from a theorem or conjecture involving more general sets of patterns. In particular, we prove results concerning symmetries, shuffles, and Knuth classes, as well as pointing out a relationship with the arc permutations of Elizalde and Roichman. Various conjectures and questions are mentioned throughout.