إننا نقدم عائلة من الحلقات من الدوال المتماثلة التي تعتمد على سلسلة غير محدودة من المعلمات. يتألف محور هذا الحلقة من المكائن المشابهة لدوال Schur. وتتألف معاملات الهيكل المرتبطة بها من المجموعات الثنائية في المعلمات التي نسميها Littlewood-Richardson polynomials. نقدم قاعدة تجميعية لحساب هذه المجموعات الثنائية باستخدام نتيجة سابقة من B. Sagan والمؤلف. يوفر القاعدة الجديدة نموذجا لهذه المجموعات الثنائية الذي يكون واضحا بشكل إيجابي في الإطار الذي أعطاه W. Graham. نطبق هذا النموذج لحساب ضرب الطبقات الشوبرت المتساوية على Grassmannians الذي يشير إلى خاصية الاستقرار لمعاملات الهيكل. كان النموذج الأول الذي يوفر نموذجا واضحا بشكل إيجابي للتوسع هذا من قبل A. Knutson وT. Tao باستخدام تجميع اللغز بينما لم يكن الإشارة إلى خاصية الاستقرار من هذا النموذج. نستخدم أيضا Littlewood-Richardson polynomials لوصف قاعدة الضرب في الجبر الخصوصي للجبر الخطي العام في الأساس الذي بناه A. Okounkov وG. Olshanski.
We introduce a family of rings of symmetric functions depending on an infinite sequence of parameters. A distinguished basis of such a ring is comprised by analogues of the Schur functions. The corresponding structure coefficients are polynomials in the parameters which we call the Littlewood-Richardson polynomials. We give a combinatorial rule for their calculation by modifying an earlier result of B. Sagan and the author. The new rule provides a formula for these polynomials which is manifestly positive in the sense of W. Graham. We apply this formula for the calculation of the product of equivariant Schubert classes on Grassmannians which implies a stability property of the structure coefficients. The first manifestly positive formula for such an expansion was given by A. Knutson and T. Tao by using combinatorics of puzzles while the stability property was not apparent from that formula. We also use the Littlewood-Richardson polynomials to describe the multiplication rule in the algebra of the Casimir elements for the general linear Lie algebra in the basis of the quantum immanants constructed by A. Okounkov and G. Olshanski.
We develop the Littlewood-Richardson homotopy algorithm, which uses numerical continuation to compute solutions to Schubert problems on Grassmannians and is based on the geometric Littlewood-Richardson rule. One key ingredient of this algorithm is our new optimal formulation of Schubert problems in local Stiefel coordinates as systems of equations. Our implementation can solve problem instances with tens of thousands of solutions.
We consider random polynomials whose coefficients are independent and uniform on {-1,1}. We prove that the probability that such a polynomial of degree n has a double root is o(n^{-2}) when n+1 is not divisible by 4 and asymptotic to $frac{8sqrt{3}}{pi n^2}$ otherwise. This result is a corollary of a more general theorem that we prove concerning random polynomials with independent, identically distributed coefficients having a distribution which is supported on { -1, 0, 1} and whose largest atom is strictly less than 1/sqrt{3}. In this general case, we prove that the probability of having a double root equals the probability that either -1, 0 or 1 are double roots up to an o(n^{-2}) factor and we find the asymptotics of the latter probability.
In this paper, we prove formulas for the action of Virasoro operators on Hall-Littlewood polynomials at roots of unity.
In this paper we explicitly compute all Littlewood-Richardson coefficients for semisimple or Kac-Moody groups G, that is, the structure coefficients of the cohomology algebra H^*(G/P), where P is a parabolic subgroup of G. These coefficients are of importance in enumerative geometry, algebraic combinatorics and representation theory. Our formula for the Littlewood-Richardson coefficients is given in terms of the Cartan matrix and the Weyl group of G. However, if some off-diagonal entries of the Cartan matrix are 0 or -1, the formula may contain negative summands. On the other hand, if the Cartan matrix satisfies $a_{ij}a_{ji}ge 4$ for all $i,j$, then each summand in our formula is nonnegative that implies nonnegativity of all Littlewood-Richardson coefficients. We extend this and other results to the structure coefficients of the T-equivariant cohomology of flag varieties G/P and Bott-Samelson varieties Gamma_ii(G).
We provide two shifted analogues of the tableau switching process due to Benkart, Sottile, and Stroomer, the shifted tableau switching process and the modified shifted tableau switching process. They are performed by applying a sequence of specially contrived elementary transformations called {em switches} and turn out to have some spectacular properties. For instance, the maps induced from these algorithms are involutive and behave very nicely with respect to shifted Young tableaux whose reading words satisfy the lattice property. As an application, we give combinatorial interpretations of Schur $P$- and $Q$-function identities. We also demonstrate the relationship between the shifted tableau switching process and the shifted $J$-operation due to Worley.