Do you want to publish a course? Click here

Enriched Fell Bundles and Spaceoids

234   0   0.0 ( 0 )
 Added by Paolo Bertozzini -
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We propose a definition of involutive categorical bundle (Fell bundle) enriched in an involutive monoidal category and we argue that such a structure is a possible suitable environment for the formalization of different equivale



rate research

Read More

Given a free and proper action of a groupoid on a Fell bundle (over another groupoid), we give an equivalence between the semidirect-product and the generalized-fixed-point Fell bundles, generalizing an earlier result where the action was by a group. As an application, we show that the Stabilization Theorem for Fell bundles over groupoids is essentially another form of crossed-product duality.
Given an action of a groupoid by isomorphisms on a Fell bundle (over another groupoid), we form a semidirect-product Fell bundle, and prove that its $C^{*}$-algebra is isomorphic to a crossed product.
103 - Tyler Lawson 2016
The invertibility hypothesis for a monoidal model category S asks that localizing an S-enriched category with respect to an equivalence results in an weakly equivalent enriched category. This is the most technical among the axioms for S to be an excellent model category in the sense of Lurie, who showed that the category of S-enriched categories then has a model structure with characterizable fibrant objects. We use a universal property of cubical sets, as a monoidal model category, to show that the invertibility hypothesis is consequence of the other axioms.
189 - Rune Haugseng 2015
We introduce a notion of bimodule in the setting of enriched $infty$-categories, and use this to construct a double $infty$-category of enriched $infty$-categories where the two kinds of 1-morphisms are functors and bimodules. We then consider a natural definition of natural transformations in this context, and show that in the underlying $(infty,2)$-category of enriched $infty$-categories with functors as 1-morphisms the 2-morphisms are given by natural transformations.
Magnitude is a numerical invariant of enriched categories, including in particular metric spaces as $[0,infty)$-enriched categories. We show that in many cases magnitude can be categorified to a homology theory for enriched categories, which we call magnitude homology (in fact, it is a special sort of Hochschild homology), whose graded Euler characteristic is the magnitude. Magnitude homology of metric spaces generalizes the Hepworth--Willerton magnitude homology of graphs, and detects geometric information such as convexity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا