Do you want to publish a course? Click here

Groupoid Semidirect Product Fell Bundles I- Actions by Isomorphisms

263   0   0.0 ( 0 )
 Added by Lucas Hall
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Given an action of a groupoid by isomorphisms on a Fell bundle (over another groupoid), we form a semidirect-product Fell bundle, and prove that its $C^{*}$-algebra is isomorphic to a crossed product.



rate research

Read More

Given a free and proper action of a groupoid on a Fell bundle (over another groupoid), we give an equivalence between the semidirect-product and the generalized-fixed-point Fell bundles, generalizing an earlier result where the action was by a group. As an application, we show that the Stabilization Theorem for Fell bundles over groupoids is essentially another form of crossed-product duality.
We propose a definition of involutive categorical bundle (Fell bundle) enriched in an involutive monoidal category and we argue that such a structure is a possible suitable environment for the formalization of different equivale
71 - Emil Prodan 2021
The bulk-boundary and a new bulk-defect correspondence principles are formulated using groupoid algebras. The new strategy relies on the observation that the groupoids of lattices with boundaries or defects display spaces of units with invariant accumulation manifolds, hence they can be naturally split into disjoint unions of open and closed invariant sub-sets. This leads to standard exact sequences of groupoid $C^ast$-algebras that can be used to associate a Kasparov element to a lattice defect and to formulate an extremely general bulk-defect correspondence principle. As an application, we establish a correspondence between topological defects of a 2-dimensional square lattice and Kasparovs group $KK^1 (C^ast(mathbb Z^3),mathbb C)$. Numerical examples of non-trivial bulk-defect correspondences are supplied.
208 - Nandor Sieben 2010
Morita equivalence of twisted inverse semigroup actions and discrete twisted partial actions are introduced. Morita equivalent actions have Morita equivalent crossed products.
61 - H. S. Bhat 2004
Here we carry out computations that help clarify the Lagrangian and Hamiltonian structure of compressible flow. The intent is to be pedagogical and rigorous, providing concrete examples of the theory outlined in Holm, Marsden, and Ratiu [1998] and Marsden, Ratiu, and Weinstein [1984].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا