No Arabic abstract
We introduce a notion of bimodule in the setting of enriched $infty$-categories, and use this to construct a double $infty$-category of enriched $infty$-categories where the two kinds of 1-morphisms are functors and bimodules. We then consider a natural definition of natural transformations in this context, and show that in the underlying $(infty,2)$-category of enriched $infty$-categories with functors as 1-morphisms the 2-morphisms are given by natural transformations.
Using the description of enriched $infty$-operads as associative algebras in symmetric sequences, we define algebras for enriched $infty$-operads as certain modules in symmetric sequences. For $mathbf{V}$ a nice symmetric monoidal model category, we prove that strict algebras for $Sigma$-cofibrant operads in $mathbf{V}$ are equivalent to algebras in the associated symmetric monoidal $infty$-category in this sense. We also show that $mathcal{O}$-algebras in $mathcal{V}$ can equivalently be described as morphisms of $infty$-operads from $mathcal{O}$ to endomorphism operads of (families of) objects of $mathcal{V}$.
In this paper we present background results in enriched category theory and enriched model category theory necessary for developing model categories of enriched functors suitable for doing functor calculus.
We prove a rectification theorem for enriched infinity-categories: If V is a nice monoidal model category, we show that the homotopy theory of infinity-categories enriched in V is equivalent to the familiar homotopy theory of categories strictly enriched in V. It follows, for example, that infinity-categories enriched in spectra or chain complexes are equivalent to spectral categories and dg-categories. A similar method gives a comparison result for enriched Segal categories, which implies that the homotopy theories of n-categories and (infinity,n)-categories defined by iterated infinity-categorical enrichment are equivalent to those of more familia
In this paper we complete a chain of explicit Quillen equivalences between the model category for $Theta_{n+1}$-spaces and the model category of small categories enriched in $Theta_n$-spaces. The Quillen equivalences given here connect Segal category objects in $Theta_n$-spaces, complete Segal objects in $Theta_n$-spaces, and $Theta_{n+1}$-spaces.
The invertibility hypothesis for a monoidal model category S asks that localizing an S-enriched category with respect to an equivalence results in an weakly equivalent enriched category. This is the most technical among the axioms for S to be an excellent model category in the sense of Lurie, who showed that the category of S-enriched categories then has a model structure with characterizable fibrant objects. We use a universal property of cubical sets, as a monoidal model category, to show that the invertibility hypothesis is consequence of the other axioms.