Do you want to publish a course? Click here

Nuclear mid-infrared properties of nearby low-luminosity AGN

133   0   0.0 ( 0 )
 Added by Daniel Asmus DA
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present ground-based high-spatial resolution mid-infrared (MIR) observations of 20 nearby low-luminosity AGN (LLAGN) with VLT/VISIR and the preliminary analysis of a new sample of 10 low-luminosity Seyferts observed with Gemini/Michelle. LLAGN are of great interest because these objects are the most common among active galaxies, especially in the nearby universe. Studying them in great detail makes it possible to investigate the AGN evolution over cosmic timescale. Indeed, many LLAGN likely represent the final stage of an AGNs lifetime. We show that even at low luminosities and accretion rates nuclear unresolved MIR emission is present in most objects. Compared to lower spatial resolution Spitzer/IRS spectra, the high-resolution MIR photometry exhibits significantly lower fluxes and different PAH emission feature properties in many cases. By using scaled Spitzer/IRS spectra of typical starburst galaxies, we show that the star formation contribution to the 12 micron emission is minor in the central parsecs of most LLAGN. Therefore, the observed MIR emission in the VISIR and Michelle data is most likely emitted by the AGN itself, which, for higher luminosity AGN, is interpreted as thermal emission from a dusty torus. Furthermore, the 12 micron emission of the LLAGN is strongly correlated with the absorption corrected 2-10 keV luminosity and the MIR--X-ray correlation found previously for AGN is extended to a range from 10^40 to 10^45 erg/s. This correlation is independent of the object type, and in particular the low-luminosity Seyferts observed with Michelle fall exactly on the power-law fit valid for brighter AGN. In addition, no dependency of the MIR--X-ray ratio on the accretion rate is found. These results are consistent with the unification model being applicable even in the probed low-luminosity regime.



rate research

Read More

148 - D. Asmus , P. Gandhi , A. Smette 2011
High spatial resolution mid-infrared (MIR) 12 mum continuum imaging of low-luminosity active galactic nuclei (LLAGN) obtained by VLT/VISIR is presented. The goal of this investigation is to determine if the nuclear MIR emission of LLAGN is consistent with the existence of a dusty obscuring torus. A sample of 17 nearby LLAGN was selected and combined with archival VISIR data of 9 additional LLAGN with available X-ray measurements. Of the 17 observed LLAGN, 7 are detected, while upper limits are derived for the 10 non-detections. All detections except NGC 3125 appear point-like on a spatial scale of sim 0.35. The detections do not significantly deviate from the known MIR-X-ray correlation but extend it by a factor of sim 10 down to luminosities < 10^41 erg/s with a narrow scatter. The latter is dominated by the uncertainties in the X-ray luminosity. Interestingly, a similar correlation with comparable slope but with a normalization differing by sim 2.6 orders of magnitude has been found for local starburst galaxies. In addition, the VISIR data are compared with lower spatial resolution data from Spitzer/IRS and IRAS. By using a scaled starburst template SED and the PAH 11.3 mum emission line the maximum nuclear star formation contamination to the VISIR photometry is restricted to < 30% for 75% of the LLAGN. Exceptions are NGC 1097 and NGC 1566, which may possess unresolved strong PAH emission. Furthermore, within the uncertainties the MIR-X-ray luminosity ratio is unchanged over more than 4 orders of magnitude in accretion rate. These results are consistent with the existence of the dusty torus in all observed LLAGN, although the jet or accretion disk as origin of the MIR emission cannot be excluded. Finally, the fact that the MIR-X-ray correlation holds for all LLAGN and Seyferts makes it a very useful empirical tool for converting between the MIR and X-ray powers of these nuclei.
130 - Eric S. Perlman 2013
We present high spatial resolution MIR observations for several nearby radio loud active galactic nuclei (RLAGN), which were obtained using the Gemini North and South telescopes. Of the six observed objects, we detected five in the Si-2 (8.7 microns) and Si-6 (12.3 microns) filters, of which two objects show some evidence of low level extended emission surrounding the unresolved nucleus. In Pictor A, we also obtained an image in Qs (18.3 microns) that has a flux of only half that seen in the Spitzer image, suggesting structure on arcsecond scales. We also used the Si-6 (12.3 microns) flux measurement to investigate correlation between our MIR flux and xray luminosity and compare this to results for AGN in general. This work also forms a basis for future high resolution imaging and spectroscopy of these objects.
We present the results of infrared L-band (3-4 micron) slit spectroscopy of 30 PG QSOs at z < 0.17, the representative sample of local high-luminosity, optically selected AGNs. The 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission feature is used to probe nuclear (< a few kpc) starburst activity and to investigate the connections between AGNs and nuclear starbursts in PG QSOs. The 3.3 micron PAH emission is detected in the individual spectra of 5/30 of the observed PG QSOs. We construct a composite spectrum of PAH-undetected PG QSOs and discern the presence of the 3.3 micron PAH emission therein. We estimate the nuclear-starburst and AGN luminosities from the observed 3.3 micron PAH emission and 3.35 micron continuum luminosities, respectively, and find that the nuclear-starburst-to-AGN luminosity ratios in PG QSOs are similar to those of previously studied AGN populations with lower luminosities, suggesting that AGN-nuclear starburst connections are valid over the wide luminosity range of AGNs in the local universe. The observed nuclear-starburst-to-AGN luminosity ratios in PG QSOs with available supermassive black hole masses are comparable to a theoretical prediction based on the assumption that the growth of a supermassive black hole is controlled by starburst-induced turbulence.
Interferometric measurements in the mid-infrared have shown that the sizes of the warm dust distributions in active galactic nuclei are consistent with their scaling with the square root of their luminosity. We carry out a more detailed analysis of this size-luminosity relation to investigate which of the general properties of the dusty tori in active galactic nuclei can be derived from this relation. We improve the accuracy of the size-luminosity relation by adding a few additional size measurements from more recent interferometric observations and compare the measured sizes to those derived from hydrodynamical and radiative transfer models of AGN tori. We find that a Gaussian approximation yields a reasonable estimate of the size of the brightness distribution, as long as the visibilities are within 0.2 {leg} V {leg} 0.9. The size estimates derived from the models are consistent with those determined from the measurements. However, the models predict a significant offset between the sizes derived for face-on and edge-on tori. This offset is not observed in the current data, probably because of the large uncertainties and low statistics of the present interferometric measurements. Furthermore, we find a ratio of the mid- to near-infrared sizes of approximately 30, whereas the first probes the body of the torus and the second is an estimate of the inner rim. The size-luminosity relation of AGN tori using Gaussian size estimates is a very simple and effective tool to investigate the internal structure and geometry of AGN tori and obtain constraints on the differences between type 1 and type 2 AGN. However, to fully exploit the possibilities of investigating the nuclear distributions of gas and dust in AGN using this size-luminosity relation, more accurate interferometric measurements of a larger sample of AGN are needed.
We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs) and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGN; Lbol lesssim 10^42 erg/sec). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGN, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGN have not yet been well-determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (I) At the low-luminosity, low-Eddington ratio (log Lbol/LEdd < -4.6) end of the sample, we identify host-dominated galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (II) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGN that genuinely lack a broad line region. (III) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR dust bump. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGN do not host a Seyfert-like obscuring torus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا