Do you want to publish a course? Click here

Mid-infrared properties of nearby low-luminosity AGN at high angular resolution

131   0   0.0 ( 0 )
 Added by Daniel Asmus DA
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

High spatial resolution mid-infrared (MIR) 12 mum continuum imaging of low-luminosity active galactic nuclei (LLAGN) obtained by VLT/VISIR is presented. The goal of this investigation is to determine if the nuclear MIR emission of LLAGN is consistent with the existence of a dusty obscuring torus. A sample of 17 nearby LLAGN was selected and combined with archival VISIR data of 9 additional LLAGN with available X-ray measurements. Of the 17 observed LLAGN, 7 are detected, while upper limits are derived for the 10 non-detections. All detections except NGC 3125 appear point-like on a spatial scale of sim 0.35. The detections do not significantly deviate from the known MIR-X-ray correlation but extend it by a factor of sim 10 down to luminosities < 10^41 erg/s with a narrow scatter. The latter is dominated by the uncertainties in the X-ray luminosity. Interestingly, a similar correlation with comparable slope but with a normalization differing by sim 2.6 orders of magnitude has been found for local starburst galaxies. In addition, the VISIR data are compared with lower spatial resolution data from Spitzer/IRS and IRAS. By using a scaled starburst template SED and the PAH 11.3 mum emission line the maximum nuclear star formation contamination to the VISIR photometry is restricted to < 30% for 75% of the LLAGN. Exceptions are NGC 1097 and NGC 1566, which may possess unresolved strong PAH emission. Furthermore, within the uncertainties the MIR-X-ray luminosity ratio is unchanged over more than 4 orders of magnitude in accretion rate. These results are consistent with the existence of the dusty torus in all observed LLAGN, although the jet or accretion disk as origin of the MIR emission cannot be excluded. Finally, the fact that the MIR-X-ray correlation holds for all LLAGN and Seyferts makes it a very useful empirical tool for converting between the MIR and X-ray powers of these nuclei.



rate research

Read More

121 - D. Asmus , S. F. Honig , P. Gandhi 2011
We present ground-based high-spatial resolution mid-infrared (MIR) observations of 20 nearby low-luminosity AGN (LLAGN) with VLT/VISIR and the preliminary analysis of a new sample of 10 low-luminosity Seyferts observed with Gemini/Michelle. LLAGN are of great interest because these objects are the most common among active galaxies, especially in the nearby universe. Studying them in great detail makes it possible to investigate the AGN evolution over cosmic timescale. Indeed, many LLAGN likely represent the final stage of an AGNs lifetime. We show that even at low luminosities and accretion rates nuclear unresolved MIR emission is present in most objects. Compared to lower spatial resolution Spitzer/IRS spectra, the high-resolution MIR photometry exhibits significantly lower fluxes and different PAH emission feature properties in many cases. By using scaled Spitzer/IRS spectra of typical starburst galaxies, we show that the star formation contribution to the 12 micron emission is minor in the central parsecs of most LLAGN. Therefore, the observed MIR emission in the VISIR and Michelle data is most likely emitted by the AGN itself, which, for higher luminosity AGN, is interpreted as thermal emission from a dusty torus. Furthermore, the 12 micron emission of the LLAGN is strongly correlated with the absorption corrected 2-10 keV luminosity and the MIR--X-ray correlation found previously for AGN is extended to a range from 10^40 to 10^45 erg/s. This correlation is independent of the object type, and in particular the low-luminosity Seyferts observed with Michelle fall exactly on the power-law fit valid for brighter AGN. In addition, no dependency of the MIR--X-ray ratio on the accretion rate is found. These results are consistent with the unification model being applicable even in the probed low-luminosity regime.
110 - Eric S. Perlman 2013
We present high spatial resolution MIR observations for several nearby radio loud active galactic nuclei (RLAGN), which were obtained using the Gemini North and South telescopes. Of the six observed objects, we detected five in the Si-2 (8.7 microns) and Si-6 (12.3 microns) filters, of which two objects show some evidence of low level extended emission surrounding the unresolved nucleus. In Pictor A, we also obtained an image in Qs (18.3 microns) that has a flux of only half that seen in the Spitzer image, suggesting structure on arcsecond scales. We also used the Si-6 (12.3 microns) flux measurement to investigate correlation between our MIR flux and xray luminosity and compare this to results for AGN in general. This work also forms a basis for future high resolution imaging and spectroscopy of these objects.
We present the results of infrared L-band (3-4 micron) slit spectroscopy of 30 PG QSOs at z < 0.17, the representative sample of local high-luminosity, optically selected AGNs. The 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission feature is used to probe nuclear (< a few kpc) starburst activity and to investigate the connections between AGNs and nuclear starbursts in PG QSOs. The 3.3 micron PAH emission is detected in the individual spectra of 5/30 of the observed PG QSOs. We construct a composite spectrum of PAH-undetected PG QSOs and discern the presence of the 3.3 micron PAH emission therein. We estimate the nuclear-starburst and AGN luminosities from the observed 3.3 micron PAH emission and 3.35 micron continuum luminosities, respectively, and find that the nuclear-starburst-to-AGN luminosity ratios in PG QSOs are similar to those of previously studied AGN populations with lower luminosities, suggesting that AGN-nuclear starburst connections are valid over the wide luminosity range of AGNs in the local universe. The observed nuclear-starburst-to-AGN luminosity ratios in PG QSOs with available supermassive black hole masses are comparable to a theoretical prediction based on the assumption that the growth of a supermassive black hole is controlled by starburst-induced turbulence.
Interferometric measurements in the mid-infrared have shown that the sizes of the warm dust distributions in active galactic nuclei are consistent with their scaling with the square root of their luminosity. We carry out a more detailed analysis of this size-luminosity relation to investigate which of the general properties of the dusty tori in active galactic nuclei can be derived from this relation. We improve the accuracy of the size-luminosity relation by adding a few additional size measurements from more recent interferometric observations and compare the measured sizes to those derived from hydrodynamical and radiative transfer models of AGN tori. We find that a Gaussian approximation yields a reasonable estimate of the size of the brightness distribution, as long as the visibilities are within 0.2 {leg} V {leg} 0.9. The size estimates derived from the models are consistent with those determined from the measurements. However, the models predict a significant offset between the sizes derived for face-on and edge-on tori. This offset is not observed in the current data, probably because of the large uncertainties and low statistics of the present interferometric measurements. Furthermore, we find a ratio of the mid- to near-infrared sizes of approximately 30, whereas the first probes the body of the torus and the second is an estimate of the inner rim. The size-luminosity relation of AGN tori using Gaussian size estimates is a very simple and effective tool to investigate the internal structure and geometry of AGN tori and obtain constraints on the differences between type 1 and type 2 AGN. However, to fully exploit the possibilities of investigating the nuclear distributions of gas and dust in AGN using this size-luminosity relation, more accurate interferometric measurements of a larger sample of AGN are needed.
98 - W.J. de Wit 2008
We present interferometric and single-dish mid-infrared observations of a sample of massive young stellar objects (BN-type objects), using VLTI-MIDI (10 micron) and Subaru-COMICS (24.5 micron). We discuss the regions S140, Mon R2, M8E-IR, and W33A. The observations probe the inner regions of the dusty envelope at scales of 50 milli arcsecond and 0.6 arcsec (100-1000 AU), respectively. Simultaneous model fits to spectral energy distributions and spatial data are achieved using self-consistent spherical envelope modelling. We conclude that those MYSO envelopes that are best described by a spherical geometry, the commensurate density distribution is a powerlaw with index -1.0. Such a powerlaw is predicted if the envelope is supported by turbulence on the 100-1000AU scales probed with MIDI and COMICS, but the role of rotation at these spatial scales need testing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا