Do you want to publish a course? Click here

Low-temperature ferroelectric phase and magnetoelectric coupling in the underdoped La_2CuO_(4+x)

124   0   0.0 ( 0 )
 Added by Shantanu Mukherjee
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of a ferroelectric ground state below 4.5 K in highly underdoped La_2CuO_(4+x) accompanied by slow charge dynamics which develop below T~40 K. An anisotropic magnetoelectric response has also been observed, indicating considerable spin-charge coupling in this lightly doped parent high temperature copper-oxide superconductor. The ferroelectric state is proposed to develop from polar nanoregions, in which spatial inversion symmetry is locally broken due to non-stoichiometric carrier doping.

rate research

Read More

The recent discovery of relaxor ferroelectricity and magnetoelectric effect in lightly doped cuprate material La_2CuO_{4+x} has provided a number of questions concerning its theoretical description. It has been argued using a Ginzburg-Landau free energy approach that the magnetoelectric effect can be explained by the presence of bi-quadratic interaction terms in the free energy. Here, by using the same free energy functional, we study the variety of behavior which can emerge in the electric polarization under an external magnetic field. Subsequently, we discuss the role of Dzyaloshinskii-Moriya interaction in generating this magnetoelectric response. This work is particularly relevant for such relaxor systems where the material-dependent parameters would be affected by changes in e.g. chemical doping or cooling rate.
277 - Yucel Yildirim , Wei Ku 2010
Despite more than two decades of intensive investigations, the true nature of high temperature (high-$T_c$) superconductivity observed in the cuprates remains elusive to the researchers. In particular, in the so-called `underdoped region, the overall behavior of superconductivity deviates $qualitatively$ from the standard theoretical description pioneered by Bardeen, Cooper and Schrieffer (BCS). Recently, the importance of phase fluctuation of the superconducting order parameter has gained significant support from various experiments. However, the microscopic mechanism responsible for the surprisingly soft phase remains one of the most important unsolved puzzles. Here, opposite to the standard BCS starting point, we propose a simple, solvable low-energy model in the strong coupling limit, which maps the superconductivity literally into a well-understood physics of superfluid in a special dilute bosonic system of local pairs of doped holes. In the prototypical material (La$_{1-delta}$Sr$_delta$)$_2$CuO$_4$, without use of any free parameter, a $d$-wave superconductivity is obtained for doping above $sim 5.2%$, below which unexpected incoherent $p$-wave pairs dominate. Throughout the whole underdoped region, very soft phases are found to originate from enormous mass enhancement of the pairs. Furthermore, a striking mass divergence is predicted that dictates the occurrence of the observed quantum critical point. Our model produces properties of the superfluid in good agreement with the experiments, and provides new insights into several current puzzles. Owing to its simplicity, this model offers a paradigm of great value in answering the long-standing challenges in underdoped cuprates.
SrTiO$_{3}$, a quantum paraelectric, becomes a metal with a superconducting instability after removal of an extremely small number of oxygen atoms. It turns into a ferroelectric upon substitution of a tiny fraction of strontium atoms with calcium. The two orders may be accidental neighbors or intimately connected, as in the picture of quantum critical ferroelectricity. Here, we show that in Sr$_{1-x}$Ca$_{x}$TiO$_{3-delta}$ ($0.002<x<0.009$, $delta<0.001$) the ferroelectric order coexists with dilute metallicity and its superconducting instability in a finite window of doping. At a critical carrier density, which scales with the Ca content, a quantum phase transition destroys the ferroelectric order. We detect an upturn in the normal-state scattering and a significant modification of the superconducting dome in the vicinity of this quantum phase transition. The enhancement of the superconducting transition temperature with calcium substitution documents the role played by ferroelectric vicinity in the precocious emergence of superconductivity in this system, restricting possible theoretical scenarios for pairing.
The superconductor at the LaAlO3-SrTiO3 interface provides a model system for the study of two-dimensional superconductivity in the dilute carrier density limit. Here we experimentally address the pairing mechanism in this superconductor. We extract the electron-phonon spectral function from tunneling spectra and conclude, without ruling out contributions of further pairing channels, that electron-phonon mediated pairing is strong enough to account for the superconducting critical temperatures. Furthermore, we discuss the electron-phonon coupling in relation to the superconducting phase diagram. The electron-phonon spectral function is independent of the carrier density, except for a small part of the phase diagram in the underdoped region. The tunneling measurements reveal that the increase of the chemical potential with increasing carrier density levels off and is zero in the overdoped region of the phase diagram. This indicates that the additionally induced carriers do not populate the band that hosts the superconducting state and that the superconducting order parameter therefore is weakened by the presence of charge carriers in another band.
105 - X. Zhao , G. Yu , Y. Cho 2006
This paper is published in Advanced Materials (available at http://www3.interscience.wiley.com/cgi-bin/abstract/113511105/ABSTRACT). It has been withdrawn from the cond-mat preprint archive in order to avoid a violation of the Journals policy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا