Do you want to publish a course? Click here

Path integration in the field of a topological defect: the case of dispiration

110   0   0.0 ( 0 )
 Added by Georg Junker
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The motion of a particle in the field of dispiration (due to a wedge disclination and a screw dislocation) is studied by path integration. By gauging $SO(2) otimes T(1)$, first, we derive the metric, curvature, and torsion of the medium of dispiration. Then we carry out explicitly path integration for the propagator of a particle moving in the non-Euclidean medium under the influence of a scalar potential and a vector potential. We obtain also the winding number representation of the propagator by taking the non-trivial topological structure of the medium into account. We extract the energy spectrum and the eigenfunctions from the propagator. Finally we make some remarks for special cases. Particularly, paying attention to the difference between the result of the path integration and the solution of Schrodingers equation in the case of disclination, we suggest that Schrodinger equation may have to be modified by a curvature term.



rate research

Read More

Quantum mechanics in conical space is studied by the path integral method. It is shown that the curvature effect gives rise to an effective potential in the radial path integral. It is further shown that the radial path integral in conical space can be reduced to a form identical with that in flat space when the discrete angular momentum of each partial wave is replaced by a specific non-integral angular momentum. The effective potential is found proportional to the squared mean curvature of the conical surface embedded in Euclidean space. The path integral calculation is compatible with the Schrodinger equation modified with the Gaussian and the mean curvature.
Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of spacelike linearity. Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.
76 - Chusei Kiumi , Kei Saito 2020
We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-defect and two-phase QWs, which have been intensively researched. Localization is one of the most characteristic properties of QWs, and various types of two-phase QWs with one defect exhibit localization. Moreover, the existence of eigenvalues is deeply related to localization. In this paper, we obtain a necessary and sufficient condition for the existence of eigenvalues. Our analytical methods are mainly based on the transfer matrix, a useful tool to generate the generalized eigenfunctions. Furthermore, we explicitly derive eigenvalues for some classes of two-phase QWs with one defect, and illustrate the range of eigenvalues on unit circles with figures. Our results include some results in previous studies, e.g. Endo et al. (2020).
In addition to the well known case of spherical coordinates the hydrogen atom separates in three further coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators. We show that the joint spectrum of the Hamilton operator, and the $z$-components of the angular momentum and quantum Laplace-Runge-Lenz vectors obtained from separation in prolate spheroidal coordinates has quantum monodromy for energies sufficiently close to the ionization threshold. This means that one cannot globally assign quantum numbers to the joint spectrum. Whereas the principal quantum number $n$ and the magnetic quantum number $m$ correspond to the Bohr-Sommerfeld quantization of globally defined classical actions a third quantum number cannot be globally defined because the third action is globally multi valued.
349 - K. Rasem Qandalji 2009
In [7] we proposed a non-generational conjectural derivation of all first class constraints (involving, only, variables compatible with canonical Poisson brackets) for realistic gauge (singular) field theories; and we verified the conjecture in cases of electromagnetic field, Yang Mills fields interacting with scalar and spinor fields, and the gravitational field. Here we will further verify our conjecture for the case of t Hooft- Polyakov (HP) monopoles field (i.e. in the Higgs Vacuum); and show that we will reproduce the results in Ref.[6], which we reached at using Diracs standard multi-generational algorithm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا