Do you want to publish a course? Click here

The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields

65   0   0.0 ( 0 )
 Added by Detlev Buchholz
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of spacelike linearity. Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.



rate research

Read More

A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of this field such as Maxwells equations, Poincare covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwells equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.
117 - Detlev Buchholz 2018
It was recently shown [2] that the resolvent algebra of a non-relativistic Bose field determines a gauge invariant (particle number preserving) kinematical algebra of observables which is stable under the automorphic action of a large family of interacting dynamics involving pair potentials. In the present article, this observable algebra is extended to a field algebra by adding to it isometries, which transform as tensors under gauge transformations and induce particle number changing morphisms of the observables. Different morphisms are linked by intertwiners in the observable algebra. It is shown that such intertwiners also induce time translations of the morphisms. As a consequence, the field algebra is stable under the automorphic action of the interacting dynamics as well. These results establish a concrete C*-algebraic framework for interacting non-relativistic Bose systems in infinite space. It provides an adequate basis for studies of long range phenomena, such as phase transitions, stability properties of equilibrium states, condensates, and the breakdown of symmetries.
76 - Zheng-Yao Su 2019
This is the sequel exposition following [1]. The framework quotient algebra partition is rephrased in the language of the s-representation. Thanks to this language, a quotient algebra partition of the simplest form is established under a minimum number of conditions governed by a bi-subalgebra of rank zero, i.e., a Cartan subalgebra. Within the framework, all Cartan subalgebras of su(N) are classified and generated recursively through the process of the subalgebra extension.
The motion of a particle in the field of dispiration (due to a wedge disclination and a screw dislocation) is studied by path integration. By gauging $SO(2) otimes T(1)$, first, we derive the metric, curvature, and torsion of the medium of dispiration. Then we carry out explicitly path integration for the propagator of a particle moving in the non-Euclidean medium under the influence of a scalar potential and a vector potential. We obtain also the winding number representation of the propagator by taking the non-trivial topological structure of the medium into account. We extract the energy spectrum and the eigenfunctions from the propagator. Finally we make some remarks for special cases. Particularly, paying attention to the difference between the result of the path integration and the solution of Schrodingers equation in the case of disclination, we suggest that Schrodinger equation may have to be modified by a curvature term.
139 - Christo I. Christov 2011
We show that the linearized equations of the incompressible elastic medium admit a `Maxwell form in which the shear component of the stress vector plays the role of the electric field, and the vorticity plays the role of the magnetic field. Conversely, the set of dynamic Maxwell equations are strict mathematical corollaries from the governing equations of the incompressible elastic medium. This suggests that the nature of `electromagnetic field may actually be related to an elastic continuous medium. The analogy is complete if the medium is assumed to behave as fluid in shear motions, while it may still behave as elastic solid under compressional motions. Then the governing equations of the elastic fluid are re-derived in the Eulerian frame by replacing the partial time derivatives by the properly invariant (frame indifferent) time rates. The `Maxwell from of the frame indifferent formulation gives the frame indifferent system that is to replace the Maxwell system. This new system comprises terms already present in the classical Maxwell equations, alongside terms that are the progenitors of the Biot--Savart, Oersted--Amperes, and Lorentz--force laws. Thus a frame indifferent (truly covariant) formulation of electromagnetism is achieved from a single postulate that the electromagnetic field is a kind of elastic (partly liquid partly solid) continuum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا