No Arabic abstract
Social networks are not static but rather constantly evolve in time. One of the elements thought to drive the evolution of social network structure is homophily - the need for individuals to connect with others who are similar to them. In this paper, we study how the spread of a new opinion, idea, or behavior on such a homophily-driven social network is affected by the changing network structure. In particular, using simulations, we study a variant of the Axelrod model on a network with a homophilic rewiring rule imposed. First, we find that the presence of homophilic rewiring within the network, in general, impedes the reaching of consensus in opinion, as the time to reach consensus diverges exponentially with network size $N$. We then investigate whether the introduction of committed individuals who are rigid in their opinion on a particular issue, can speed up the convergence to consensus on that issue. We demonstrate that as committed agents are added, beyond a critical value of the committed fraction, the consensus time growth becomes logarithmic in network size $N$. Furthermore, we show that slight changes in the interaction rule can produce strikingly different results in the scaling behavior of $T_c$. However, the benefit gained by introducing committed agents is qualitatively preserved across all the interaction rules we consider.
We show how the prevailing majority opinion in a population can be rapidly reversed by a small fraction p of randomly distributed committed agents who consistently proselytize the opposing opinion and are immune to influence. Specifically, we show that when the committed fraction grows beyond a critical value p_c approx 10%, there is a dramatic decrease in the time, T_c, taken for the entire population to adopt the committed opinion. In particular, for complete graphs we show that when p < p_c, T_c sim exp(alpha(p)N), while for p > p_c, T_c sim ln N. We conclude with simulation results for ErdH{o}s-Renyi random graphs and scale-free networks which show qualitatively similar behavior.
Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the groups opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions $A$ and $B$, and constituting fractions $p_A$ and $p_B$ of the total population respectively, are present in the network. We show for stylized social networks (including ErdH{o}s-Renyi random graphs and Barabasi-Albert scale-free networks) that the phase diagram of this system in parameter space $(p_A,p_B)$ consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.
In many real-world networks, the rates of node and link addition are time dependent. This observation motivates the definition of accelerating networks. There has been relatively little investigation of accelerating networks and previous efforts at analyzing their degree distributions have employed mean-field techniques. By contrast, we show that it is possible to apply a master-equation approach to such network development. We provide full time-dependent expressions for the evolution of the degree distributions for the canonical situations of random and preferential attachment in networks undergoing constant acceleration. These results are in excellent agreement with results obtained from simulations. We note that a growing, non-equilibrium network undergoing constant acceleration with random attachment is equivalent to a classical random graph, bridging the gap between non-equilibrium and classical equilibrium networks.
A model for epidemic spreading on rewiring networks is introduced and analyzed for the case of scale free steady state networks. It is found that contrary to what one would have naively expected, the rewiring process typically tends to suppress epidemic spreading. In particular it is found that as in static networks, rewiring networks with degree distribution exponent $gamma >3$ exhibit a threshold in the infection rate below which epidemics die out in the steady state. However the threshold is higher in the rewiring case. For $2<gamma leq 3$ no such threshold exists, but for small infection rate the steady state density of infected nodes (prevalence) is smaller for rewiring networks.
The field of Financial Networks is a paramount example of the novel applications of Statistical Physics that have made possible by the present data revolution. As the total value of the global financial market has vastly outgrown the value of the real economy, financial institutions on this planet have created a web of interactions whose size and topology calls for a quantitative analysis by means of Complex Networks. Financial Networks are not only a playground for the use of basic tools of statistical physics as ensemble representation and entropy maximization; rather, their particular dynamics and evolution triggered theoretical advancements as the definition of DebtRank to measure the impact and diffusion of shocks in the whole systems. In this review we present the state of the art in this field, starting from the different definitions of financial networks (based either on loans, on assets ownership, on contracts involving several parties -- such as credit default swaps, to multiplex representation when firms are introduced in the game and a link with real economy is drawn) and then discussing the various dynamics of financial contagion as well as applications in financial network inference and validation. We believe that this analysis is particularly timely since financial stability as well as recent innovations in climate finance, once properly analysed and understood in terms of complex network theory, can play a pivotal role in the transformation of our society towards a more sustainable world.