No Arabic abstract
Using single-shot charge detection in a GaAs double quantum dot, we investigate spin relaxation time T_1 and readout visibility of a two-electron singlet-triplet qubit following single-electron dynamic nuclear polarization (DNP). For magnetic fields up to 2 T, the DNP cycle is in all cases found to increase Overhauser field gradients, which in turn decrease T_1 and consequently reduce readout visibility. This effect was previously attributed to a suppression of singlet-triplet dephasing under a similar DNP cycle. A model describing relaxation after singlet-triplet mixing agrees well with experiment. Effects of pulse bandwidth on visibility are also investigated.
We measure singlet-triplet mixing in a precision fabricated double donor dot comprising of 2 and 1 phosphorus atoms separated by $16{pm}1$ nm. We identify singlet and triplet-minus states by performing sequential independent spin readout of the two electron system and probe its dependence on magnetic field strength. The relaxation of singlet and triplet states are measured to be $12.4{pm}1.0$ s and $22.1{pm}1.0$ s respectively at $B_z{=}2.5$ T.
In this work we perform direct single-shot readout of the singlet-triplet states in exchange coupled electrons confined to precision placed donor atoms in silicon. Our method takes advantage of the large energy splitting given by the Pauli-spin blockaded (2,0) triplet states, from which we can achieve a single-shot readout fidelity of 98.4$pm$0.2%. We measure the triplet-minus relaxation time to be of the order 3s at 2.5T and observe its predicted decrease as a function of magnetic field, reaching 0.5s at 1T.
We study theoretically the phonon-induced relaxation and decoherence of spin states of two electrons in a lateral double quantum dot in a SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin qubits and calculate their relaxation and decoherence times, in particular as a function of level hybridization, temperature, magnetic field, spin orbit interaction, and detuning between the quantum dots, using Bloch-Redfield theory. We show that the magnetic field gradient, which is usually applied to operate the spin qubit, may reduce the relaxation time by more than an order of magnitude. Using this insight, we identify an optimal regime where the magnetic field gradient does not affect the relaxation time significantly, and we propose regimes of longest decay times. We take into account the effects of one-phonon and two-phonon processes and suggest how our theory can be tested experimentally. The spin lifetimes we find here for Si-based quantum dots are significantly longer than the ones reported for their GaAs counterparts.
We report implementation of a resonantly driven singlet-triplet spin qubit in silicon. The qubit is defined by the two-electron anti-parallel spin states and universal quantum control is provided through a resonant drive of the exchange interaction at the qubit frequency. The qubit exhibits long $T_2^*$ exceeding 1 $mu$s that is limited by dephasing due to the $^{29}$Si nuclei rather than charge noise thanks to the symmetric operation and a large micro-magnet Zeeman field gradient. The randomized benchmarking shows 99.6 % single gate fidelity which is the highest reported for singlet-triplet qubits.
Charge noise is the main hurdle preventing high-fidelity operation, in particular that of two-qubit gates, of semiconductor-quantum-dot-based spin qubits. While certain sweet spots where charge noise is substantially suppressed have been demonstrated in several types of spin qubits, the existence of one for coupled singlet-triplet qubits is unclear. We theoretically demonstrate, using full configuration-interaction calculations, that a range of nearly sweet spots appear in the coupled singlet-triplet qubit system when a strong enough magnetic field is applied externally. We further demonstrate that ramping to and from the judiciously chosen nearly sweet spot using sequences based on the shortcut to adiabaticity offers maximal gate fidelities under charge noise and phonon-induced decoherence. These results should facilitate realization of high-fidelity two-qubit gates in singlet-triplet qubit systems.