No Arabic abstract
In this work we perform direct single-shot readout of the singlet-triplet states in exchange coupled electrons confined to precision placed donor atoms in silicon. Our method takes advantage of the large energy splitting given by the Pauli-spin blockaded (2,0) triplet states, from which we can achieve a single-shot readout fidelity of 98.4$pm$0.2%. We measure the triplet-minus relaxation time to be of the order 3s at 2.5T and observe its predicted decrease as a function of magnetic field, reaching 0.5s at 1T.
Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16${pm}1$ nm. By utilizing an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.
The size of silicon transistors used in microelectronic devices is shrinking to the level where quantum effects become important. While this presents a significant challenge for the further scaling of microprocessors, it provides the potential for radical innovations in the form of spin-based quantum computers and spintronic devices. An electron spin in Si can represent a well-isolated quantum bit with long coherence times because of the weak spin-orbit coupling and the possibility to eliminate nuclear spins from the bulk crystal. However, the control of single electrons in Si has proved challenging, and has so far hindered the observation and manipulation of a single spin. Here we report the first demonstration of single-shot, time-resolved readout of an electron spin in Si. This has been performed in a device consisting of implanted phosphorus donors coupled to a metal-oxide-semiconductor single-electron transistor - compatible with current microelectronic technology. We observed a spin lifetime approaching 1 second at magnetic fields below 2 T, and achieved spin readout fidelity better than 90%. High-fidelity single-shot spin readout in Si opens the path to the development of a new generation of quantum computing and spintronic devices, built using the most important material in the semiconductor industry.
A single nuclear spin holds the promise of being a long-lived quantum bit or quantum memory, with the high fidelities required for fault-tolerant quantum computing. We show here that such promise could be fulfilled by a single phosphorus (31P) nuclear spin in a silicon nanostructure. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate the quantum non-demolition, electrical single-shot readout of the nuclear spin, with readout fidelity better than 99.8% - the highest for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radiofrequency (RF) pulses. For an ionized 31P donor we find a nuclear spin coherence time of 60 ms and a 1-qubit gate control fidelity exceeding 98%. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear spin-based quantum information processing.
Single electron spins confined in silicon quantum dots hold great promise as a quantum computing architecture with demonstrations of long coherence times, high-fidelity quantum logic gates, basic quantum algorithms and device scalability. While single-shot spin detection is now a laboratory routine, the need for quantum error correction in a large-scale quantum computing device demands a quantum non-demolition (QND) implementation. Unlike conventional counterparts, the QND spin readout imposes minimal disturbance to the probed spin polarization and can therefore be repeated to extinguish measurement errors. However, it has remained elusive for an electron spin in silicon as it involves exquisite exposure of the system to the external circuitry for readout while maintaining the coherence and integrity of the qubit. Here we show that an electron spin qubit in silicon can be measured in a highly non-demolition manner by probing another electron spin in a neighboring dot Ising-coupled to the qubit spin. The high non-demolition fidelity (99% on average) enables over 20 readout repetitions of a single spin state, yielding an overall average measurement fidelity of up to 95% within 1.2 ms. We further demonstrate that our repetitive QND readout protocol can realize heralded high-fidelity (> 99.6%) ground-state preparation. Our QND-based measurement and preparation, mediated by a second qubit of the same kind, will allow for a new class of quantum information protocols with electron spins in silicon without compromising the architectural homogeneity.
Using single-shot charge detection in a GaAs double quantum dot, we investigate spin relaxation time T_1 and readout visibility of a two-electron singlet-triplet qubit following single-electron dynamic nuclear polarization (DNP). For magnetic fields up to 2 T, the DNP cycle is in all cases found to increase Overhauser field gradients, which in turn decrease T_1 and consequently reduce readout visibility. This effect was previously attributed to a suppression of singlet-triplet dephasing under a similar DNP cycle. A model describing relaxation after singlet-triplet mixing agrees well with experiment. Effects of pulse bandwidth on visibility are also investigated.