Do you want to publish a course? Click here

Optical Properties of Manganese Doped Wide Band Gap ZnS and ZnO

598   0   0.0 ( 0 )
 Added by Elzbieta Guziewicz
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical properties of ZnMnO layers grown at low temperature by Atomic Layer Deposition and Metalorganic Vapor Phase Epitaxy are discussed and compared to results obtained for ZnMnS samples. Present results suggest a double valence of Mn ions in ZnO lattice. Strong absorption, with onset at about 2.1 eV, is tentatively related to Mn 2+ to 3+ photoionization. Mechanism of emission deactivation in ZnMnO is discussed and is explained by the processes following the assumed Mn 2+ to 3+ recharging.



rate research

Read More

The structure-property relation of nanostructured Al-doped ZnO thin films has been investigated in detail through a systematic variation of structure and morphology, with particular emphasis on how they affect optical and electrical properties. A variety of structures, ranging from compact polycristalline films to mesoporous, hierarchically organized cluster assemblies, are grown by Pulsed Laser Deposition at room temperature at different oxygen pressures. We investigate the dependence of functional properties on structure and morphology and show how the correlation between electrical and optical properties can be studied to evaluate energy gap, conduction band effective mass and transport mechanisms. Understanding these properties opens the way for specific applications in photovoltaic devices, where optimized combinations of conductivity, transparency and light scattering are required.
Wide band gap semiconductors are essential for todays electronic devices and energy applications due to their high optical transparency, as well as controllable carrier concentration and electrical conductivity. There are many categories of materials that can be defined as wide band gap semiconductors. The most intensively investigated are transparent conductive oxides (TCOs) such as ITO and IGZO used in displays, carbides and nitrides used in power electronics, as well as emerging halides (e.g. CuI) and 2D electronic materials used in various optoelectronic devices. Chalcogen-based (S, Se, Te) wide band gap semiconductors are less heavily investigated but stand out due to their propensity for p-type doping, high mobilities, high valence band positions (i.e. low ionization potentials), and broad applications in electronic devices such as CdTe solar cells. This manuscript provides a review of wide band gap chalcogenide semiconductors. First, we outline general materials design parameters of high performing transparent conductors. We proceed to summarize progress in wide band gap (Eg > 2 eV) chalcogenide materials, such as II-VI MCh binaries, CuMCh2 chalcopyrites, Cu3MCh4 sulvanites, mixed anion layered CuMCh(O,F), and 2D materials, among others, and discuss computational predictions of potential new candidates in this family, highlighting their optical and electrical properties. We finally review applications of chalcogenide wide band gap semiconductors, e.g. photovoltaic and photoelectrochemical solar cells, transparent transistors, and diodes, that employ wide band gap chalcogenides as either an active or passive layer. By examining, categorizing, and discussing prospective directions in wide band gap chalcogenides, this review aims to inspire continued research on this emerging class of transparent conductors and to enable future innovations for optoelectronic devices.
Uniaxial hot pressing has been used to obtain ceramics based on zinc oxide, and their optical, x-ray-structure, luminescence, and scintillation characteristics have been studied. It is shown that, by changing the concentration of the dopant (Ga) and the codopant (N), it is possible to change the intensities of the edge band (397.5 nm) and the intraband luminescence (510 nm) of the ZnO luminescence, as well as their ratio. Undoped ZnO ceramic has good transparency in the visible region and fairly high luminous yield: 9050 photons per MeV. Ceramic ZnO:Ga possesses intense edge luminescence with a falloff time of about 1 ns.
Multilayer films of ZnO with Co were deposited on glass substrates then annealed in a vacuum. The magnetisation of the films increased with annealing but not the magnitude of the magneto-optical signals. The dielectric functions for the films were calculated using the MCD spectra. A Maxwell Garnett theory of a metallic Co/ZnO mixture is presented. The extent to which this explains the MCD spectra taken on the films is discussed.
We present results of magneto-optical measurements and theoretical analysis of shallow bound exciton complexes in bulk ZnO. Polarization and angular dependencies of magneto-photoluminescence spectra at 5 T suggest that the upper valence band has $Gamma_7$ symmetry. Nitrogen doping leads to the formation of an acceptor center that compensates shallow donors. This is confirmed by the observation of excitons bound to ionized donors in nitrogen doped ZnO. The strongest transition in the ZnO:N ($I_9$ transition) is associated with a donor bound exciton. This conclusion is based on its thermalization behavior in temperature-dependent magneto-transmission measurements and is supported by comparison of the thermalization properties of the $I_9$ and $I_4$ emission lines in temperature-dependent magneto-photoluminescence investigations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا