Do you want to publish a course? Click here

Magneto-Optical Properties of Bound Excitons in ZnO

103   0   0.0 ( 0 )
 Added by Anna Rodina
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of magneto-optical measurements and theoretical analysis of shallow bound exciton complexes in bulk ZnO. Polarization and angular dependencies of magneto-photoluminescence spectra at 5 T suggest that the upper valence band has $Gamma_7$ symmetry. Nitrogen doping leads to the formation of an acceptor center that compensates shallow donors. This is confirmed by the observation of excitons bound to ionized donors in nitrogen doped ZnO. The strongest transition in the ZnO:N ($I_9$ transition) is associated with a donor bound exciton. This conclusion is based on its thermalization behavior in temperature-dependent magneto-transmission measurements and is supported by comparison of the thermalization properties of the $I_9$ and $I_4$ emission lines in temperature-dependent magneto-photoluminescence investigations.



rate research

Read More

Multilayer films of ZnO with Co were deposited on glass substrates then annealed in a vacuum. The magnetisation of the films increased with annealing but not the magnitude of the magneto-optical signals. The dielectric functions for the films were calculated using the MCD spectra. A Maxwell Garnett theory of a metallic Co/ZnO mixture is presented. The extent to which this explains the MCD spectra taken on the films is discussed.
493 - T. Makino 2013
We report on the photoluminescence (PL) properties of MgZnO/ZnO heterojunctions grown by plasma-assisted molecular-beam epitaxy. Influence of the applied magnetic field (B) on the radiative recombination of the two-dimensional electron gas (2DEG) is investigated up to 54 T. An increase in magnetic field in the range of B <= 20 T results in a redshift in the PL. Abrupt lineshape changes in the PL spectra are observed at higher magnetic fields, in correlation with the integer quantum Hall states. We attempt to interpret these features using the conventional model for the 2DEG-related PL based on the transition between the 2DEG and a hole as well as a model taking a bound state effect into account, i.e., a charged exciton. The comparison about the adequateness of these models was made, being in favor of the charged exciton model.
The coherent optical response from 140~nm and 65~nm thick ZnO epitaxial layers is studied using transient four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D$^0$X$_text{A}$) at temperature of 1.8~K we evaluate optical coherence times $T_2=33-50$~ps corresponding to homogeneous linewidths of $13-19~mu$eV, about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time $T_1=30-40$~ps, while pure dephasing is negligible in the studied high quality samples even for strong optical excitation. Temperature increase leads to a significant shortening of $T_2$ due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D$^0$X$_text{B}$) is significantly faster ($T_2=3.6$~ps) and governed by pure dephasing processes.
In this paper we show that spinel ferrite nanocrystals (NiFe2O4, and CoFe2O4) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.
Optical and magneto-optical properties of ZnMnO films grown at low temperature by Atomic Layer Deposition are discussed. A strong polarization of excitonic photoluminescence is reported, surprisingly observed without splitting or spectral shift of excitonic transitions. Present results suggest possibility of Mn recharging in ZnO lattice. Strong absorption, with onset at about 2.1 eV, is related to Mn 2+ to 3+ photo-ionization. We propose that the observed strong circular polarization of excitonic emission is of a similar character as the one observed by us for ZnSe:Cr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا