Do you want to publish a course? Click here

Discrimination of New Physics Models with the International Linear Collider

166   0   0.0 ( 0 )
 Added by Taikan Suehara
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

The large hadron collider (LHC) is anticipated to provide signals of new physics at the TeV scale, which are likely to involve production of a WIMP dark matter candidate. The international linear collider (ILC) is to sort out these signals and lead us to some viable model of the new physics at the TeV scale. In this article, we discuss how the ILC can discriminate new physics models, taking the following three examples: the inert Higgs model, the supersymmetric model, and the littlest Higgs model with T-parity. These models predict dark matter particles with different spins, 0, 1/2, and 1, respectively, and hence comprise representative scenarios. Specifically, we focus on the pair production process, e+e- -> chi+chi- -> chi0chi0W+W-, where chi0 and chi+- are the WIMP dark matter and a new charged particle predicted in each of these models. We then evaluate how accurately the properties of these new particles can be determined at the ILC and demonstrate that the ILC is capable of identifying the spin of the new charged particle and discriminating these models.



rate research

Read More

With the discovery of a Higgs boson at LHC, all particles of the Standard Model seem to have been observed experimentally, yet many questions are left unanswered. The discovery has intensified the planning for future high-energy colliders, which aim to probe the Standard Model and the mechanism of electroweak symmetry breaking with higher precision and to extend and complement the search for new particles currently under way at the LHC. The most mature option for such a future facility is the International Linear Collider ILC, an electron-positron collider with a centre-of-mass energy of 500 GeV, and the potential for upgrades into the TeV region. The ILC will fully explore the Higgs sector, including model-independent coupling and width measurements, direct measurements of the coupling to the top quark and the Higgs self-coupling, enable precision measurements of top quark properties and couplings as well as other electroweak precision measurements and provide extensive discovery potential for new physics complementary to the capabilities of hadron colliders. This paper will give an overview of the physics case of the ILC, put in context of the running scenario covering different centre-of-mass energies, and discuss the current status and perspectives of this global facility.
184 - Howard Baer 2013
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a push-pull configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.
150 - Felix Sefkow 2014
The talk summarises the case for Higgs physics in $e^+e^-$ collisions and explains how Higgs parameters can be extracted in a model-independent way at the International Linear Collider (ILC). The expected precision will be discussed in the context of projections for the experiments at the Large Hadron Collider (LHC).
We investigate the potential of the International Linear Collider (ILC) to probe the mechanisms of neutrino mass generation and leptogenesis within the minimal seesaw model. Our results can also be used as an estimate for the potential of a Compact Linear Collider (CLIC). We find that heavy sterile neutrinos that simultaneously explain both, the observed light neutrino oscillations and the baryon asymmetry of the universe, can be found in displaced vertex searches at ILC. We further study the precision at which the flavour-dependent active-sterile mixing angles can be measured. The measurement of the ratios of these mixing angles, and potentially also of the heavy neutrino mass splitting, can test whether minimal type I seesaw models are the origin of the light neutrino masses, and it can be a first step towards probing leptogenesis as the mechanism of baryogenesis. Our results show that the ILC can be used as a discovery machine for New Physics in feebly coupled sectors that can address fundamental questions in particle physics and cosmology.
132 - S.Y. Choi 2008
The next-generation high-energy facilities, the CERN Large Hadron Collider (LHC) and the prospective $e^+e^-$ International Linear Collider (ILC), are expected to unravel new structures of matter and forces from the electroweak scale to the TeV scale. In this report we review the complementary role of LHC and ILC in drawing a comprehensive and high-precision picture of the mechanism breaking the electroweak symmetries and generating mass, and the unification of forces in the frame of supersymmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا