Do you want to publish a course? Click here

The Higgs Physics Programme at the International Linear Collider

156   0   0.0 ( 0 )
 Added by Felix Sefkow
 Publication date 2014
  fields
and research's language is English
 Authors Felix Sefkow




Ask ChatGPT about the research

The talk summarises the case for Higgs physics in $e^+e^-$ collisions and explains how Higgs parameters can be extracted in a model-independent way at the International Linear Collider (ILC). The expected precision will be discussed in the context of projections for the experiments at the Large Hadron Collider (LHC).



rate research

Read More

With the discovery of a Higgs boson at LHC, all particles of the Standard Model seem to have been observed experimentally, yet many questions are left unanswered. The discovery has intensified the planning for future high-energy colliders, which aim to probe the Standard Model and the mechanism of electroweak symmetry breaking with higher precision and to extend and complement the search for new particles currently under way at the LHC. The most mature option for such a future facility is the International Linear Collider ILC, an electron-positron collider with a centre-of-mass energy of 500 GeV, and the potential for upgrades into the TeV region. The ILC will fully explore the Higgs sector, including model-independent coupling and width measurements, direct measurements of the coupling to the top quark and the Higgs self-coupling, enable precision measurements of top quark properties and couplings as well as other electroweak precision measurements and provide extensive discovery potential for new physics complementary to the capabilities of hadron colliders. This paper will give an overview of the physics case of the ILC, put in context of the running scenario covering different centre-of-mass energies, and discuss the current status and perspectives of this global facility.
The Compact Linear Collider (CLIC) is an option for a future e+e- collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: sqrt(s) = 350 GeV, 1.4 TeV and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e+e- -> ZH) and WW-fusion (e+e- -> Hnunu), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma_H, and model-independent determinations of the Higgs couplings. Operation at sqrt(s) > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e+e- -> ttH and e+e- -> HHnunu allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.
We present an overview of the capabilities that the International Linear Collider (ILC) offers for precision measurements that probe the Standard Model. First, we discuss the improvements that the ILC will make in precision electroweak observables, both from W boson production and radiative return to the Z at 250 GeV in the center of mass and from a dedicated GigaZ stage of running at the Z pole. We then present new results on precision measurements of fermion pair production, including the production of b and t quarks. We update the ILC projections for the determination of Higgs boson couplings through a Standard Model Effective Field Theory fit taking into account the new information on precision electroweak constraints. Finally, we review the capabilities of the ILC to measure the Higgs boson self-coupling.
The International Linear Collider (ILC) is now under consideration as the next global project in particle physics. In this report, we review of all aspects of the ILC program: the physics motivation, the accelerator design, the run plan, the proposed detectors, the experimental measurements on the Higgs boson, the top quark, the couplings of the W and Z bosons, and searches for new particles. We review the important role that polarized beams play in the ILC program. The first stage of the ILC is planned to be a Higgs factory at 250 GeV in the centre of mass. Energy upgrades can naturally be implemented based on the concept of a linear collider. We discuss in detail the ILC program of Higgs boson measurements and the expected precision in the determination of Higgs couplings. We compare the ILC capabilities to those of the HL-LHC and to those of other proposed e+e- Higgs factories. We emphasize throughout that the readiness of the accelerator and the estimates of ILC performance are based on detailed simulations backed by extensive RandD and, for the accelerator technology, operational experience.
We report on a study of the physics potential of linear $e^+e^-$ colliders. Although a linear collider (LC) would support a broad physics program, we focus on the contributions that could help elucidate the origin of electroweak symmetry breaking. Many extensions of the standard model have a decoupling limit, with a Higgs boson similar to the standard one and other, higher-mass states. Mindful of such possibilities, we survey the physics of a (nearly) standard Higgs boson, as a function of its mass. We also review how measurements from an LC could help verify several well-motivated extensions of the standard model. For supersymmetry, we compare the strengths of an LC with the LHC. Also, assuming the lightest superpartner explains the missing dark matter in the universe, we examine other places to search for a signal of supersymmetry. We compare the signatures of several scenarios with extra spatial dimensions. We also explore the possibility that the Higgs is a composite, concentrating on models that (unlike technicolor) have a Higgs boson with mass of a few hundred GeV or less. Where appropriate, we mention the importance of high luminosity, for example to measure branching ratios of the Higgs, and the importance of multi-TeV energies, for example to explore the full spectrum of superpartners.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا