No Arabic abstract
We solve the coherent multiple Andreev reflection (MAR) problem and calculate current-voltage characteristics (IVCs) for Josephson SINIS junctions, where S are local-equilibrium superconducting reservoirs, I denotes tunnel barriers, and N is a short diffusive normal wire, the length of which is much smaller than the coherence length, and the resistance is much smaller than the resistance of the tunnel barriers. The charge transport regime in such junctions qualitatively depends on a characteristic value gamma = Delta tau_d of relative phase shifts between the electrons and retro-reflected holes accumulated during the dwell time tau_d. In the limit of small electron-hole dephasing gamma << 1, our solution recovers a known formula for a short mesoscopic connector extended to the MAR regime. At large dephasing, the subharmonic gap structure in the IVC scales with 1/ gamma, which thus plays the role of an effective tunneling parameter. In this limit, the even gap subharmonics are resonantly enhanced, and the IVC exhibits portions with negative differential resistance.
We consider a planar SIS-type Josephson junction between diffusive superconductors (S) through an insulating tunnel interface (I). We construct fully self-consistent perturbation theory with respect to the interface conductance. As a result, we find correction to the first Josephson harmonic and calculate the second Josephson harmonic. At arbitrary temperatures, we correct previous results for the nonsinusoidal current-phase relation in Josephson tunnel junctions, which were obtained with the help of conjectured form of solution. Our perturbation theory also describes the difference between the phases of the order parameter and of the anomalous Green functions.
We have investigated charge transport in ultrasmall superconducting single and double Josephson junctions coupled to resonant modes of the electromagnetic environment. We observe pronounced current peaks in the transport characteristics of both types of devices and attribute them to the process involving simultaneous tunneling of Cooper pairs and photon emission into the resonant modes. The experimental data is well reproduced with the theoretical models.
We report experiments on micron-scale normal metal loop connected by superconducting wires, where the sample geometry enables full modulation of the thermal activation barrier with applied magnetic flux, resembling a symmetric quantum interference device. We find that except a constant factor of five, the modulation of the barrier can be well fitted by the Ambegaokar-Halperin model for a resistively shunted junction, extended here to a proximity junction with flux-tunable coupling energy estimated using quasiclassical theory. This observation sheds light on the understanding of effect of thermal fluctuation in proximity junctions, while may also lead to an unprecedented level of control in quantum interference devices.
Quantitative description of charge transport across tunneling and break-junction devices with novel superconductors encounters some problems not present, or not as severe for traditional superconducting materials. In this work, we explain unexpected features in related transport characteristics as an effect of a degraded nano-scaled sheath at the superconductor surface. Model capturing main aspects of the ballistic charge transport across hybrid superconducting structures with normally-conducting nm-thick interlayers is proposed. The calculations are based on a scattering formalism taking into account Andreev electron-into-hole (and inverse) reflections at normal metal-superconductor interfaces as well as transmission and backscattering events in insulating barriers between the electrodes. Current-voltage characteristics of such devices exhibit a rich diversity of anomalous (from the viewpoint of the standard theory) features, in particular, shift of differential-conductance maximums at gap voltages to lower positions and appearance of well-defined dips instead expected coherence peaks. We compare our results with related experimental data.
The effect of thermal fluctuations in Josephson junctions is usually analysed using the Ambegaokar-Halperin (AH) theory in the context of thermal activation. Enhanced fluctuations, demonstrated by broadening of current-voltage characteristics, have previously been found for proximity Josephson junctions. Here we report measurements of micron-scale normal metal loops contacted with thin superconducting electrodes, where the unconventional loop geometry enables tuning of the junction barrier with applied flux; for some geometries, the barrier can be effectively eliminated. Stronger fluctuations are observed when the flux threading the normal metal loop is near an odd half-integer flux quantum, and for devices with thinner superconducting electrodes. These findings suggest that the activation barrier, which is the Josephson coupling energy of the proximity junction, is different from that of conventional Josephson junctions. Simple one dimensional quasiclassical theory can predict the interference effect due to the loop structure, but the exact magnitude of the coupling energy cannot be computed without taking into account the details of the sample dimensions. In this way, the physics of this system is similar to the phase slipping process in thin superconducting wires. Besides shedding light on thermal fluctuations in proximity junctions, the findings here also demonstrate a new type of superconducting interference device with two normal branches sharing the same SN interface on both sides of the device, which has technical advantages for making symmetrical interference devices.