We have investigated charge transport in ultrasmall superconducting single and double Josephson junctions coupled to resonant modes of the electromagnetic environment. We observe pronounced current peaks in the transport characteristics of both types of devices and attribute them to the process involving simultaneous tunneling of Cooper pairs and photon emission into the resonant modes. The experimental data is well reproduced with the theoretical models.
We present an exhaustive study of the coherent heat transport through superconductor-ferromagnet(S-F) Josephson junctions including a spin-filter (I$_{sf}$) tunneling barrier. By using the quasiclassical Keldysh Greens function technique we derive a general expression for the heat current flowing through a S/F/I$_{sf}$/F/S junction and analyze the dependence of the thermal conductance on the spin-filter efficiency, the phase difference between the superconductors and the magnetization direction of the ferromagnetic layers. In the case of non-collinear magnetizations we show explicitly the contributions to the heat current stemming from the singlet and triplet components of the superconducting condensate. We also demonstrate that the magnetothermal resistance ratio of a S/F/I$_{sf}$/F/S heat valve can be increased by the spin-filter effect under suitable conditions.
We solve the coherent multiple Andreev reflection (MAR) problem and calculate current-voltage characteristics (IVCs) for Josephson SINIS junctions, where S are local-equilibrium superconducting reservoirs, I denotes tunnel barriers, and N is a short diffusive normal wire, the length of which is much smaller than the coherence length, and the resistance is much smaller than the resistance of the tunnel barriers. The charge transport regime in such junctions qualitatively depends on a characteristic value gamma = Delta tau_d of relative phase shifts between the electrons and retro-reflected holes accumulated during the dwell time tau_d. In the limit of small electron-hole dephasing gamma << 1, our solution recovers a known formula for a short mesoscopic connector extended to the MAR regime. At large dephasing, the subharmonic gap structure in the IVC scales with 1/ gamma, which thus plays the role of an effective tunneling parameter. In this limit, the even gap subharmonics are resonantly enhanced, and the IVC exhibits portions with negative differential resistance.
We present the results of theoretical study of Current-Phase Relations (CPR) in Josephson junctions of SIsFS type, where S is a bulk superconductor and IsF is a complex weak link consisting of a superconducting film s, a metallic ferromagnet F and an insulating barrier I. We calculate the relationship between Josephson current and phase difference. At temperatures close to critical, calculations are performed analytically in the frame of the Ginsburg-Landau equations. At low temperatures numerical method is developed to solve selfconsistently the Usadel equations in the structure. We demonstrate that SIsFS junctions have several distinct regimes of supercurrent transport and we examine spatial distributions of the pair potential across the structure in different regimes. We study the crossover between these regimes which is caused by shifting the location of a weak link from the tunnel barrier I to the F-layer. We show that strong deviations of the CPR from sinusoidal shape occur even in a vicinity of Tc, and these deviations are strongest in the crossover regime. We demonstrate the existence of temperature-induced crossover between 0 and pi states in the contact and show that smoothness of this transition strongly depends on the CPR shape.
We present microwave measurements of a high quality factor superconducting resonator incorporating two aluminum nanobridge Josephson junctions in a loop shunted by an on-chip capacitor. Trapped quasiparticles (QPs) shift the resonant frequency, allowing us to probe the trapped QP number and energy distribution and to quantify their lifetimes. We find that the trapped QP population obeys a Gibbs distribution above 75 mK, with non-Poissonian trapping statistics. Our results are in quantitative agreement with the Andreev bound state model of transport, and demonstrate a practical means to quantify on-chip QP populations and validate mitigation strategies in a cryogenic environment.
We consider the problem of two capacitively coupled Josephson junction arrays made of ultrasmall junctions. Each one of the arrays can be in the semiclassical or quantum regimes, depending on their physical parameter values. The former case is dominated by a Cooper-pair superfluid while the quantum one is dominated by dynamic vortices leading to an insulating behavior. We first consider the limit when both arrays are in the semiclassical limit, and next the case when one array is quantum and the other semiclassical. We present WKB and Mean Field theory results for the critical temperature of each array when both are in the semiclassical limit. When one array is in the semiclassical regime and the other one in the quantum fluctuations dominated regimes, we derive a duality transformation between the charged and vortex dominated arrays that involve a gauge vector field, which is proportional to the site coupling capacitance between the arrays. The system considered here has been fabricated and we make some predictions as to possible experimentally measurable quantities that could be compared with theory.
Yu. A. Pashkin
,H. Im
,J. Leppakangas
.
(2010)
.
"Charge transport through ultrasmall single and double Josephson junctions coupled to resonant modes of the electromagnetic environment"
.
Erkki V. Thuneberg
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا