Do you want to publish a course? Click here

Flux-tunable barrier in proximity Josephson junctions

184   0   0.0 ( 0 )
 Added by Jian Wei
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report experiments on micron-scale normal metal loop connected by superconducting wires, where the sample geometry enables full modulation of the thermal activation barrier with applied magnetic flux, resembling a symmetric quantum interference device. We find that except a constant factor of five, the modulation of the barrier can be well fitted by the Ambegaokar-Halperin model for a resistively shunted junction, extended here to a proximity junction with flux-tunable coupling energy estimated using quasiclassical theory. This observation sheds light on the understanding of effect of thermal fluctuation in proximity junctions, while may also lead to an unprecedented level of control in quantum interference devices.



rate research

Read More

The effect of thermal fluctuations in Josephson junctions is usually analysed using the Ambegaokar-Halperin (AH) theory in the context of thermal activation. Enhanced fluctuations, demonstrated by broadening of current-voltage characteristics, have previously been found for proximity Josephson junctions. Here we report measurements of micron-scale normal metal loops contacted with thin superconducting electrodes, where the unconventional loop geometry enables tuning of the junction barrier with applied flux; for some geometries, the barrier can be effectively eliminated. Stronger fluctuations are observed when the flux threading the normal metal loop is near an odd half-integer flux quantum, and for devices with thinner superconducting electrodes. These findings suggest that the activation barrier, which is the Josephson coupling energy of the proximity junction, is different from that of conventional Josephson junctions. Simple one dimensional quasiclassical theory can predict the interference effect due to the loop structure, but the exact magnitude of the coupling energy cannot be computed without taking into account the details of the sample dimensions. In this way, the physics of this system is similar to the phase slipping process in thin superconducting wires. Besides shedding light on thermal fluctuations in proximity junctions, the findings here also demonstrate a new type of superconducting interference device with two normal branches sharing the same SN interface on both sides of the device, which has technical advantages for making symmetrical interference devices.
Josephson junctions made of closely-spaced conventional superconductors on the surface of 3D topological insulators have been proposed to host Andreev bound states (ABSs) which can include Majorana fermions. Here, we present an extensive study of the supercurrent carried by low energy ABSs in Nb/Bi$_2$Se$_3$/Nb Josephson junctions in various SQUIDs as we modulate the carrier density in the Bi$_2$Se$_3$ barriers through electrostatic top gates. As previously reported, we find a precipitous drop in the Josephson current at a critical value of the voltage applied to the top gate. This drop has been attributed to a transition where the topologically trivial 2DEG at the surface is nearly depleted, causing a shift in the spatial location and change in nature of the helical surface states. We present measurements that support this picture by revealing qualitative changes in the temperature and magnetic field dependence of the critical current across this transition. In particular, we observe pronounced fluctuations in the critical current near total depletion of the 2DEG that demonstrate the dynamical nature of the supercurrent transport through topological low energy ABSs.
The anomalous proximity effect in dirty superconducting junctions is one of most striking phenomena highlighting the profound nature of Majorana bound states and odd-frequency Cooper pairs in topological superconductors. Motivated by the recent experimental realization of planar topological Josephson junctions, we describe the anomalous proximity effect in a superconductor/semiconductor hybrid, where an additional dirty normal-metal segment is extended from a topological Josephson junction. The topological phase transition in the topological Josephson junction is accompanied by a drastic change in the low-energy transport properties of the attached dirty normal-metal. The quantization of the zero-bias differential conductance, which appears only in the topologically nontrivial phase, is caused by the penetration of the Majorana bound states and odd-frequency Cooper pairs into a dirty normal-metal segment. As a consequence, we propose a practical experiment for observing the anomalous proximity effect.
We report transport measurements on Josephson junctions consisting of Bi2Te3 topological insulator (TI) thin films contacted by superconducting Nb electrodes. For a device with junction length L = 134 nm, the critical supercurrent Ic can be modulated by an electrical gate which tunes the carrier type and density of the TI film. Ic can reach a minimum when the TI is near the charge neutrality regime with the Fermi energy lying close to the Dirac point of the surface state. In the p-type regime the Josephson current can be well described by a short ballistic junction model. In the n-type regime the junction is ballistic at 0.7 K < T < 3.8 K while for T < 0.7 K the diffusive bulk modes emerge and contribute a larger Ic than the ballistic model. We attribute the lack of diffusive bulk modes in the p-type regime to the formation of p-n junctions. Our work provides new clues for search of Majorana zero mode in TI-based superconducting devices.
Josephson junctions were photogenerated in underdoped thin films of the YBa$_2$Cu$_3$O$_{6+x}$ family using a near-field scanning optical microscope. The observation of the Josephson effect for separations as large as 100 nm between two wires indicates the existence of an anomalously large proximity effect and show that the underdoped insulating material in the gap of the junction is readily perturbed into the superconducting state. The critical current of the junctions was found to be consistent with the conventional Josephson relationship. This result constrains the applicability of SO(5) theory to explain the phase diagram of high critical temperature superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا