No Arabic abstract
We report on measurements of the superconducting properties of FeSe05Te05 thin films grown on lanthanum aluminate. The films have high transition temperatures (above 19 K) and sharp resistive transitions in fields up to 15 T. The temperature dependence of the upper critical field and the irreversibility lines are steep and anisotropic, as recently reported for single crystals. The critical current densities, assessed by magnetization measurements in a vector VSM, were found to be well above 10^9 Am-2 at low temperatures. In all samples, the critical current as a function of field orientation has a maximum, when the field is oriented parallel to the film surface. The maximum indicates the presence of correlated pinning centers. A minimum occurs in three films, when the field is applied perpendicular to the film plane. In the forth film, instead, a local maximum caused by c-axis correlated pinning centers was found at this orientation. The irradiation of two films with fast neutrons did not change the properties drastically, where a maximum enhancement of the critical current by a factor of two was found.
FeSe0.5Te0.5 thin films were grown by pulsed laser deposition on CaF2, LaAlO3 and MgO substrates and structurally and electro-magnetically characterized in order to study the influence of the substrate on their transport properties. The in-plane lattice mismatch between FeSe0.5Te0.5 bulk and the substrates shows no influence on the lattice parameters of the films, whereas the type of substrates affects the crystalline quality of the films and, therefore, the superconducting properties. The film on MgO showed an extra peak in the angular dependence of critical current density Jc({theta}) at {theta} = 180{deg} (H || c), which arises from c-axis defects as confirmed by transmission electron microscopy. In contrast, no Jc({theta}) peaks for H || c were observed in films on CaF2 and LaAlO3. Jc({theta}) can be scaled successfully for both films without c-axis correlated defects by the anisotropic Ginzburg-Landau (AGL) approach with appropriate anisotropy ratio {gamma}J. The scaling parameter {gamma}J is decreasing with decreasing temperature, which is different from what we observed in FeSe0.5Te0.5 films on Fe-buffered MgO substrates.
We investigate the influence of carbon-ion irradiation on the superconducting critical properties of MgB$_2$ thin films. MgB$_2$ films of two thicknesses viz. 400 nm (MB400nm) and 800 nm (MB800nm) were irradiated by 350 keV C ions having a wide range of fluence, 1 x 10$^{13}$ - 1 x 10$^{15}$ C atoms/cm$^2$. The mean projected range ($R_p$) of 350 keV C ions in MgB$_2$ is 560 nm, thus the energetic C ions will pass through the MB400nm, whereas the ions will remain into the MB800nm. The superconducting transition temperature ($T_c$), upper critical field ($H_{c2}$), $c$-axis lattice parameter, and corrected residual resistivity ($rho_{corr}$) of both the films showed similar trends with the variation of fluence. However, a disparate behavior in the superconducting phase transition was observed in the MB800nm when the fluence was larger than 1 x 10$^{14}$ C atoms/cm$^2$ because of the different Tcs between the irradiated and non-irradiated parts of the film. Interestingly, the superconducting critical properties, such as $T_c$, $H_{c2}$, and $J_c$, of the irradiated MgB$_2$ films, as well as the lattice parameter, were almost restored to those in the pristine state after a thermal annealing procedure. These results demonstrate that the atomic lattice distortion induced by C-ion irradiation is the main reason for the change in the superconducting properties of MgB$_2$ films.
The effects of neutron irradiation on normal state and superconducting properties of epitaxial magnesium diboride thin films are studied up to fluences of 1020 cm-2. All the properties of the films change systematically upon irradiation. Critical temperature is suppressed and, at the highest fluence, no superconducting transition is observed down to 1.8 K. Residual resistivity progressively increases from 1 to 190 microohmcm; c axis expands and then saturates at the highest damage level. We discuss the mechanism of damage through the comparison with other damage procedures. The normal state magnetoresistivity of selected samples measured up to high fields (28 and 45T) allows to determine unambiguously the scattering rates in each band; the crossover between the clean and dirty limit in each sample can be monitored. This set of samples, with controlled amount of disorder, is suitable to study the puzzling problem of critical field in magnesium diboride thin films. The measured critical field values are extremely high (of the order of 50T in the parallel direction at low fluences) and turns out to be rather independent on the experimental resistivity, at least at low fluences. A simple model to explain this phenomenology is presented.
Most measurements of critical current densities in YBa$_2$Cu$_3$O$_{7-delta}$ thin films to date have been performed on films where the textit{c}-axis is grown normal to the film surface. With such films, the analysis of the dependence of $j_c$ on the magnetic field angle is complex. The effects of extrinsic contributions to the angular field dependence of $j_c$, such as the measurement geometry and disposition of pinning centres, are convoluted with those intrinsically due to the anisotropy of the material. As a consequence of this, it is difficult to distinguish between proposed FLL structure models on the basis of angular critical current density measurements on textit{c}-axis films. Films grown on mis-cut (vicinal) substrates have a reduced measurement symmetry and thus provide a greater insight into the critical current anisotropy. In this paper previous descriptions of the magnetic field angle dependence of $j_c$ in YBa$_2$Cu$_3$O$_{7-delta}$ are reviewed. Measurements on YBa$_2$Cu$_3$O$_{7-delta}$ thin films grown on a range of vicinal substrates are presented and the results interpreted in terms of the structure and dimensionality of the FLL in YBa$_2$Cu$_3$O$_{7-delta}$. There is strong evidence for a transition in the structure of the flux line lattice depending on magnetic field magnitude, orientation and temperature. As a consequence, a simple scaling law can not, by itself, describe the observed critical current anisotropy in YBa$_2$Cu$_3$O$_{7-delta}$. The experimentally obtained $j_c(theta)$ behaviour of YBCO is successfully described in terms of a kinked vortex structure for fields applied near parallel to the textit{a-b} planes.
Here we report the comparison of the upper critical fields of different superconductors being calculated by two different theories i.e., Werthamer Helfand Hohenburg (WHH) and Ginzberg Landau (GL). All the samples are synthesized through previously known solid state reaction route. Phase purity is determined from the Rietveld refinement of powder X-Ray diffraction (XRD) data. High field (up to 14Tesla) magneto transport r{ho}(T)H of different superconductors is studied to estimate their upper critical field (Hc2). The present inter comparison covers from Cuprates (YBa2Cu3O7) - Borides (MgB2) - Fe pnictides (NdFeAsO0.8F0.2) and chalcogenides (FeSe0.5Te0.5) to robust Nb2PdS5. The upper critical fields [Hc2(T)] at zero temperature are calculated by extrapolating the data using GL and WHH equations.