Do you want to publish a course? Click here

Halpha and 4000 Angstrom Break Measurements for ~3500 K-selected Galaxies at 0.5<z<2.0

85   0   0.0 ( 0 )
 Added by Mariska Kriek
 Publication date 2011
  fields Physics
and research's language is English
 Authors Mariska Kriek




Ask ChatGPT about the research

We measure spectral features of ~3500 K-selected galaxies at 0.5<z<2.0 from high quality medium-band photometry using a new technique. First, we divide the galaxy sample in 32 subsamples based on the similarities between the full spectral energy distributions (SEDs) of the galaxies. For each of these 32 galaxy types we construct a composite SED by de-redshifting and scaling the observed photometry. This approach increases the signal-to-noise ratio and sampling of galaxy SEDs and allows for model-independent stellar population studies. The composite SEDs are of spectroscopic quality, and facilitate -- for the first time -- Halpha measurement for a large magnitude-limited sample of distant galaxies. The linewidths indicate a photometric redshift uncertainty of dz<0.02x(1+z). The composite SEDs also show the Balmer and 4000 Angstrom breaks, MgII absorption at ~2800 Angstrom, the dust absorption feature at 2175 Angstrom, and blended [OIII]+Hbeta emission. We compare the total equivalent width of Halpha, [NII], and [SII] (W_Halpha+) with the strength of the 4000 Angstrom break (D(4000)) and the best-fit specific star formation rate, and find that all these properties are strongly correlated. This is a reassuring result, as currently most distant stellar population studies are based on just continuum emission. Furthermore, the relation between W_Halpha+ and Dn(4000) provides interesting clues to the SFHs of galaxies, as these features are sensitive to different stellar ages. We find that the correlation between W_Halpha+ and D(4000) at 0.5<z<2.0 is similar to z~0, and that the suppression of star formation in galaxies at z<2 is generally not abrupt, but a gradual process.



rate research

Read More

115 - G. G. Kacprzak 2011
We have used GIM2D to quantify the morphological properties of 40 intermediate redshift MgII absorption-selected galaxies (0.03<Wr(2796)<2.9 Ang), imaged with WFPC-2/HST, and compared them to the halo gas properties measured form HIRES/Keck and UVES/VLT quasar spectra. We find that as the quasar-galaxy separation, D, increases the MgII equivalent decreases with large scatter, implying that D is not the only physical parameter affecting the distribution and quantity of halo gas. Our main result shows that inclination correlates with MgII absorption properties after normalizing out the relationship (and scatter) between the absorption properties and D. We find a 4.3 sigma correlation between Wr(2796) and galaxy inclination, normalized by impact parameter, i/D. Other measures of absorption optical depth also correlate with i/D at greater than 3.2 sigma significance. Overall, this result suggests that MgII gas has a co-planer geometry, not necessarily disk-like, that is coupled to the galaxy inclination. It is plausible that the absorbing gas arises from tidal streams, satellites, filaments, etc., which tend to have somewhat co-planer distributions. This result does not support a picture in which MgII absorbers with Wr(2796)<1A are predominantly produced by star-formation driven winds. We further find that; (1) MgII host galaxies have quantitatively similar bulge and disk scale length distribution to field galaxies at similar redshifts and have a mean disk and bulge scale length of 3.8kpc and 2.5kpc, respectively; (2) Galaxy color and luminosity do not correlate strongly with absorption properties, implying a lack of a connection between host galaxy star formation rates and absorption strength; (3) Parameters such as scale lengths and bulge-to-total ratios do not significantly correlate with the absorption parameters, suggesting that the absorption is independent of galaxy size or mass.
We present results of a search for bright Lyman break galaxies at 1.5<=z<=2.5 in the GOODS-S field using a NUV-dropout technique in combination with color-selection. We derived a sample of 73 LBG candidates. We compare our selection efficiencies to BM/BX- and BzK methods (techniques solely based on ground-based data sets), and find the NUV data to provide greater efficiency for selecting star-forming galaxies. We estimate LBG candidate ages, masses, star formation rates, and extinction from fitting PEGASE synthesis evolution models. We find about 20% of our LBG candidates are comparable to infrared luminous LBGs or sub-millimeter galaxies which are thought to be precursors of massive elliptical galaxies today. Overall, we can show that although BM/BX and BzK methods do identify star-forming galaxies at z~2, the sample they provide biases against those star-forming galaxies which are more massive and contain sizeable red stellar populations. A true Lyman break criterion at z~2 is therefore more directly comparable to the populations found at z~3, which does contain a red fraction.
We present results of optical spectroscopic observations of candidates of Lyman Break Galaxies (LBGs) at $z sim 5$ in the region including the GOODS-N and the J0053+1234 region by using GMOS-N and GMOS-S, respectively. Among 25 candidates, five objects are identified to be at $z sim 5$ (two of them were already identified by an earlier study) and one object very close to the color-selection window turned out to be a foreground galaxy. With this spectroscopically identified sample and those from previous studies, we derived the lower limits on the number density of bright ($M_{UV}<-22.0$ mag) LBGs at $z sim 5$. These lower limits are comparable to or slightly smaller than the number densities of UV luminosity functions (UVLFs) that show the smaller number density among $z sim 5$ UVLFs in literature. However, by considering that there remain many LBG candidates without spectroscopic observations, the number density of bright LBGs is expected to increase by a factor of two or more. The evidence for the deficiency of UV luminous LBGs with large Ly$alpha$ equivalent widths was reinforced. We discuss possible causes for the deficiency and prefer the interpretation of dust absorption.
We report the PACS-100um/160um detections of a sample of 42 GALEX-selected and FIR-detected Lyman break galaxies (LBGs) at z ~ 1 located in the COSMOS field and analyze their ultra-violet (UV) to far-infrared (FIR) properties. The detection of these LBGs in the FIR indicates that they have a dust content high enough so that its emission can be directly detected. According to a spectral energy distribution (SED) fitting with stellar population templates to their UV-to-near-IR observed photometry, PACS-detected LBGs tend to be bigger, more massive, dustier, redder in the UV continuum, and UV-brighter than PACS-undetected LBGs. PACS-detected LBGs at z ~ 1 are mostly disk-like galaxies and are located over the green-valley and red sequence of the color-magnitude diagram of galaxies at their redshift. By using their UV and IR emission, we find that PACS-detected LBGs tend to be less dusty and have slightly higher total star-formation rates (SFRs) than other PACS-detected UV-selected galaxies within their same redshift range. As a consequence of the selection effect due to the depth of the FIR observations employed, all our PACS-detected LBGs are LIRGs. However, none of them are in the ULIRG regime, where the FIR observations are complete. The finding of ULIRGs-LBGs at higher redshifts suggests an evolution of the FIR emission of LBGs with cosmic time. In an IRX-$beta$ diagram, PACS-detected LBGs at z ~ 1 tend to be located around the relation for local starburst similarly to other UV-selected PACS-detected galaxies at their same redshift. Consequently, the dust-correction factors obtained with their UV continuum slope allow to determine their total SFR, unlike at higher redshifts. However, the dust attenuation derived from UV to NIR SED fitting overestimates the total SFR for most of our PACS-detected LBGs in age-dependent way: the overestimation factor is higher in younger galaxies.
As part of the Herschel Multi-tiered Extragalactic Survey we have investigated the rest-frame far-infrared (FIR) properties of a sample of more than 4800 Lyman Break Galaxies (LBGs) in the Great Observatories Origins Deep Survey North field. Most LBGs are not detected individually, but we do detect a sub-sample of 12 objects at 0.7 < z < 1.6 and one object at z ~ 2.0. The ones detected by Herschel SPIRE have redder observed NUV-U and U-R colors than the others, while the undetected ones have colors consistent with average LBGs at z > 2.5. The UV-to-FIR spectral energy distributions of the objects detected in the rest-frame FIR are investigated using the code CIGALE to estimate physical parameters. We find that LBGs detected by SPIRE are high mass, luminous infrared galaxies. It appears that LBGs are located in a triangle-shaped region in the A_FUV vs. Log L_FUV diagram limited by A_FUV=0 at the bottom and by a diagonal following the temporal evolution of the most massive galaxies from the bottom-right to the top-left of the diagram. This upper envelop can be used as upper limits for the UV dust attenuation as a function of L_FUV}. The limits of this region are well explained using a closed-box model, where the chemical evolution of galaxies produces metals, which in turn lead to higher dust attenuation when the galaxies age.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا