Do you want to publish a course? Click here

Lyman Break Galaxies at z~5: Rest-Frame UV Spectra. III

152   0   0.0 ( 0 )
 Added by Kiyoto Yabe
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of optical spectroscopic observations of candidates of Lyman Break Galaxies (LBGs) at $z sim 5$ in the region including the GOODS-N and the J0053+1234 region by using GMOS-N and GMOS-S, respectively. Among 25 candidates, five objects are identified to be at $z sim 5$ (two of them were already identified by an earlier study) and one object very close to the color-selection window turned out to be a foreground galaxy. With this spectroscopically identified sample and those from previous studies, we derived the lower limits on the number density of bright ($M_{UV}<-22.0$ mag) LBGs at $z sim 5$. These lower limits are comparable to or slightly smaller than the number densities of UV luminosity functions (UVLFs) that show the smaller number density among $z sim 5$ UVLFs in literature. However, by considering that there remain many LBG candidates without spectroscopic observations, the number density of bright LBGs is expected to increase by a factor of two or more. The evidence for the deficiency of UV luminous LBGs with large Ly$alpha$ equivalent widths was reinforced. We discuss possible causes for the deficiency and prefer the interpretation of dust absorption.



rate research

Read More

We present the results of spectroscopy of Lyman Break Galaxies (LBGs) at z~5 in the J0053+1234 field with the Faint Object Camera and Spectrograph on the Subaru telescope. Among 5 bright candidates with z < 25.0 mag, 2 objects are confirmed to be at z~5 from their Ly alpha emission and the continuum depression shortward of Ly alpha. The EWs of Ly alpha emission of the 2 LBGs are not so strong to be detected as Ly alpha emitters, and one of them shows strong low-ionized interstellar (LIS) metal absorption lines. Two faint objects with z geq 25.0 mag are also confirmed to be at z~5, and their spectra show strong Ly alpha emission in contrast to the bright ones. These results suggest a deficiency of strong Ly alpha emission in bright LBGs at z~5, which has been discussed in our previous paper. Combined with our previous spectra of LBGs at z~5 obtained around the Hubble Deep Field-North (HDF-N), we made a composite spectrum of UV luminous (M_1400 leq -21.5 mag) LBGs at z~5. The resultant spectrum shows a weak Ly alpha emission and strong LIS absorptions which suggests that the bright LBGs at z~5 have chemically evolved at least to ~0.1 solar metallicity. For a part of our sample in the HDF-N region, we obtained near-to-mid infrared data, which constraint stellar masses of these objects. With the stellar mass and the metallicity estimated from LIS absorptions, the metallicities of the LBGs at z~5 tend to be lower than those of the galaxies with the same stellar mass at z lesssim 2, although the uncertainty is very large.
127 - Masataka Ando 2004
We report initial results for spectroscopic observations of candidates of Lyman Break Galaxies (LBGs) at $zsim5$ in a region centered on the Hubble Deep Field-North by using the Faint Object Camera and Spectrograph attached to the Subaru Telescope. Eight objects with $I_Cleq25.0$ mag, including one AGN, are confirmed to be at $4.5<z<5.2$. The rest-frame UV spectra of seven LBGs commonly show no or weak Lyalpha emission line (rest-frame equivalent width of 0-10AA) and relatively strong low-ionization interstellar metal absorption lines of SiII $lambda$1260, OI+SiII $lambda$1303, and CII $lambda$1334 (mean rest-frame equivalent widths of them are $-1.2 sim -5.1 $AA). These properties are significantly different from those of the mean rest-frame UV spectrum of LBGs at $zsim3$, but are quite similar to those of subgroups of LBGs at $zsim3$ with no or weak Lyalpha emission. The weakness of Lyalpha emission and strong low-ionization interstellar metal absorption lines may indicate that these LBGs at $zsim5$ are chemically evolved to some degree and have a dusty environment. Since the fraction of such LBGs at $zsim5$ in our sample is larger than that at $zsim3$, we may witness some sign of evolution of LBGs from $zsim5$ to $zsim3$, though the present sample size is very small. It is also possible, however, that the brighter LBGs tend to show no or weak Lyalpha emission, because our spectroscopic sample is bright (brighter than $L^{ast}$) among LBGs at $zsim5$. More observations are required to establish spectroscopic nature of LBGs at $zsim5$.
We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest-frame 3600 to 6800AA, including robust detections of fainter lines such as H-gamma, [SII]6717,6732, and in one instance [NeII]3869. SDSS J090122.37+181432.3 shows evidence for AGN activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties, including star-formation rate (SFR), metallicity, dynamical mass, and dust extinction. In all respects, the lensed objects appear fairly typical of UV-selected star-forming galaxies at z~2. The Clone occupies a position on the emission-line diagnostic diagram of [OIII]/H-beta vs. [NII]/H-alpha that is offset from the locations of z~0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [SII] line ratio, high electron densities (~1000 cm^(-3)) are inferred compared to local galaxies, and [OIII]/[OII] line ratios indicate higher ionization parameters compared to the local population. Building on previous similar results at z~2, these measurements provide further evidence (at high S/N) that star-forming regions are significantly different in high-redshift galaxies, compared to their local counterparts (abridged).
164 - Fuyan Bian 2013
We present a deep LBT/LBC U-band imaging survey (9 deg2) covering the NOAO Bootes field. A total of 14,485 Lyman Break Galaxies (LBGs) at z~3 are selected, which are used to measure the rest-frame UV luminosity function (LF). The large sample size and survey area reduce the LF uncertainties due to Poisson statistics and cosmic variance by >3 compared to previous studies. At the bright end, the LF shows excess power compared to the best-fit Schechter function, which can be attributed to the contribution of $zsim3$ quasars. We compute the rest-frame near-infrared LF and stellar mass function (SMF) of z~3 LBGs based on the R-band and IRAC [4.5 micro m]-band flux relation. We investigate the evolution of the UV LFs and SMFs between z~7 and z~3, which supports a rising star formation history in the LBGs. We study the spatial correlation function of two bright LBG samples and estimate their average host halo mass. We find a tight relation between the host halo mass and the galaxy star formation rate (SFR),which follows the trend predicted by the baryonic accretion rate onto the halo, suggesting that the star formation in LBGs is fueled by baryonic accretion through the cosmic web. By comparing the SFRs with the total baryonic accretion rates, we find that cosmic star formation efficiency is about 5%-20% and it does not evolve significantly with redshift, halo mass, or galaxy luminosity.
We present properties of individual and composite rest-UV spectra of continuum- and narrowband-selected star-forming galaxies (SFGs) at a redshift of 2<z<3.5 discovered by the MUSYC collaboration in the ECDF-S. Among our sample of 81 UV-bright SFGs, 59 have R<25.5, of which 32 have rest-frame equivalent widths W_{Ly{alpha}}>20 {AA}, the canonical limit to be classified as a LAE. We divide our dataset into subsamples based on properties we are able to measure for each individual galaxy: Ly{alpha} equivalent width, rest-frame UV colors, and redshift. Among our subsample of galaxies with R<25.5, those with rest-frame W_{Ly{alpha}}>20 {AA} have bluer UV continua, weaker low-ionization interstellar absorption lines, weaker C IV absorption, and stronger Si II* nebular emission than those with W_{Ly{alpha}}<20 {AA}. We measure a typical velocity offset of {Delta}v~600 km s$^{-1}$ between Ly{alpha} emission and low-ionization absorption among our subsamples. We find that the interstellar component, as opposed to the stellar component, dominates the high-ionization absorption line profiles. We find the low- and high-ionization Si ionization states have similar kinematic properties, yet the low-ionization absorption is correlated with Ly$alpha$ emission and the high-ionization absorption is not. These trends are consistent with outflowing neutral gas being in the form of neutral clouds embedded in ionized gas as previously suggested by cite{Steidel2010}. Moreover, our galaxies with bluer UV colors have stronger Ly{alpha} emission, weaker low-ionization absorption and more prominent nebular emission line profiles. Among our dataset, UV-bright galaxies with W_{Ly{alpha}}>20 {AA} exhibit weaker Ly{alpha} emission at lower redshifts, although we caution that this could be caused by spectroscopic confirmation of low Ly{alpha} equivalent width galaxies being harder at z~3 than z~2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا