Do you want to publish a course? Click here

GALEX selected Lyman Break Galaxies at z~2: Comparison with other Populations

121   0   0.0 ( 0 )
 Added by Lutz Haberzettl
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of a search for bright Lyman break galaxies at 1.5<=z<=2.5 in the GOODS-S field using a NUV-dropout technique in combination with color-selection. We derived a sample of 73 LBG candidates. We compare our selection efficiencies to BM/BX- and BzK methods (techniques solely based on ground-based data sets), and find the NUV data to provide greater efficiency for selecting star-forming galaxies. We estimate LBG candidate ages, masses, star formation rates, and extinction from fitting PEGASE synthesis evolution models. We find about 20% of our LBG candidates are comparable to infrared luminous LBGs or sub-millimeter galaxies which are thought to be precursors of massive elliptical galaxies today. Overall, we can show that although BM/BX and BzK methods do identify star-forming galaxies at z~2, the sample they provide biases against those star-forming galaxies which are more massive and contain sizeable red stellar populations. A true Lyman break criterion at z~2 is therefore more directly comparable to the populations found at z~3, which does contain a red fraction.



rate research

Read More

181 - I. Oteo , A. Bongiovanni , J. Cepa 2013
We take advantage of the exceptional photometric coverage provided by the combination of GALEX data in the UV and the ALHAMBRA survey in the optical and near-IR to analyze the physical properties of a sample of 1225 GALEX-selected Lyman break galaxies (LBGs) at $0.8 lesssim z lesssim 1.2$ located in the COSMOS field. This is the largest sample of LBGs studied at that redshift range so far. According to a spectral energy distribution (SED) fitting with synthetic stellar population templates, we find that LBGs at $z sim 1$ are mostly young galaxies with a median age of 341 Myr and have intermediate dust attenuation, $ < E_s (B-V) > sim 0.20$. Due to their selection criterion, LBGs at $z sim 1$ are UV-bright galaxies and have high dust-corrected total SFR, with a median value of 16.9 $M_odot {rm yr}^{-1}$. Their median stellar mass is $log{left(M_*/M_odot right)} = 9.74$. We obtain that the dust-corrected total SFR of LBGs increases with stellar mass and the specific SFR is lower for more massive galaxies. Only 2% of the galaxies selected through the Lyman break criterion have an AGN nature. LBGs at $z sim 1$ are mostly located over the blue cloud of the color-magnitude diagram of galaxies at their redshift, with only the oldest and/or the dustiest deviating towards the green valley and red sequence. Morphologically, 69% of LBGs are disk-like galaxies, with the fraction of interacting, compact, or irregular systems being much lower, below 12%. LBGs have a median effective radius of 2.5 kpc and bigger galaxies have higher total SFR and stellar mass. Comparing to their high-redshift analogues, we find evidence that LBGs at lower redshifts are bigger, redder in the UV continuum, and have a major presence of older stellar populations in their SEDs. However, we do not find significant difference in the distributions of stellar mass or dust attenuation.
133 - Chun Ly 2009
Abridged: A photometric sample of ~7100 V<25.3 Lyman break galaxies (LBGs) has been selected by combining Subaru/Suprime-Cam BVRciz data with deep GALEX/NUV imaging of the Subaru Deep Field. Follow-up spectroscopy confirmed 24 LBGs at 1.5<z<2.7. Among the optical spectra, 12 have Ly-alpha emission with rest-frame equivalent widths of ~5-60AA. The success rate for identifying LBGs as NUV-dropouts at 1.5<z<2.7 is 86%. The rest-frame UV (1700AA) luminosity function (LF) is constructed from the photometric sample with corrections for stellar contamination and z<1.5 interlopers. The LF is 1.7+/-0.1 times higher than those of z~2 BXs and z~3 LBGs. Three explanations were considered, and it is argued that significantly underestimating low-z contamination or effective comoving volume is unlikely: the former would be inconsistent with the spectroscopic sample at 93% confidence, and the second explanation would not resolve the discrepancy. The third scenario is that different photometric selection of the samples yields non-identical galaxy populations, such that some BX galaxies are LBGs and vice versa. This argument is supported by a higher surface density of LBGs at all magnitudes while the redshift distribution of the two populations is nearly identical. This study, when combined with other star-formation rate (SFR) density UV measurements from LBG surveys, indicates that there is a rise in the SFR density: a factor of 3-6 (3-10) increase from z~5 (z~6) to z~2, followed by a decrease to z~0. This result, along with past sub-mm studies that find a peak at z~2 in their redshift distribution, suggest that z~2 is the epoch of peak star-formation. Additional spectroscopy is required to characterize the complete shape of the z~2 LBG UV LF via measurements of contamination and accurate distances.
We present the results of Spectral Energy Distribution(SED) fitting analysis for Lyman Break Galaxies(LBGs) at z~5 in the GOODS-N and its flanking fields (the GOODS-FF). With the publicly available IRAC images in the GOODS-N and IRAC data in the GOODS-FF, we constructed the rest-frame UV to optical SEDs for a large sample (~100) of UV-selected galaxies at z~5. Comparing the observed SEDs with model SEDs generated with a population synthesis code, we derived a best-fit set of parameters (stellar mass, age, color excess, and star formation rate) for each of sample LBGs. The derived stellar masses range from 10^8 to 10^11M_sun with a median value of 4.1x10^9M_sun. The comparison with z=2-3 LBGs shows that the stellar masses of z~5 LBGs are systematically smaller by a factor of 3-4 than those of z=2-3 LBGs in a similar rest-frame UV luminosity range. The star formation ages are relatively younger than those of the z=2-3 LBGs. We also compared the results for our sample with other studies for the z=5-6 galaxies. Although there seem to be similarities and differences in the properties, we could not conclude its significance. We also derived a stellar mass function of our sample by correcting for incompletenesses. Although the number densities in the massive end are comparable to the theoretical predictions from semi-analytic models, the number densities in the low-mass part are smaller than the model predictions. By integrating the stellar mass function down to 10^8 M_sun, the stellar mass density at z~5 is calculated to be (0.7-2.4)x10^7M_sun Mpc^-3. The stellar mass density at z~5 is dominated by massive part of the stellar mass function. Compared with other observational studies and the model predictions, the mass density of our sample is consistent with general trend of the increase of the stellar mass density with time.
We report the PACS-100um/160um detections of a sample of 42 GALEX-selected and FIR-detected Lyman break galaxies (LBGs) at z ~ 1 located in the COSMOS field and analyze their ultra-violet (UV) to far-infrared (FIR) properties. The detection of these LBGs in the FIR indicates that they have a dust content high enough so that its emission can be directly detected. According to a spectral energy distribution (SED) fitting with stellar population templates to their UV-to-near-IR observed photometry, PACS-detected LBGs tend to be bigger, more massive, dustier, redder in the UV continuum, and UV-brighter than PACS-undetected LBGs. PACS-detected LBGs at z ~ 1 are mostly disk-like galaxies and are located over the green-valley and red sequence of the color-magnitude diagram of galaxies at their redshift. By using their UV and IR emission, we find that PACS-detected LBGs tend to be less dusty and have slightly higher total star-formation rates (SFRs) than other PACS-detected UV-selected galaxies within their same redshift range. As a consequence of the selection effect due to the depth of the FIR observations employed, all our PACS-detected LBGs are LIRGs. However, none of them are in the ULIRG regime, where the FIR observations are complete. The finding of ULIRGs-LBGs at higher redshifts suggests an evolution of the FIR emission of LBGs with cosmic time. In an IRX-$beta$ diagram, PACS-detected LBGs at z ~ 1 tend to be located around the relation for local starburst similarly to other UV-selected PACS-detected galaxies at their same redshift. Consequently, the dust-correction factors obtained with their UV continuum slope allow to determine their total SFR, unlike at higher redshifts. However, the dust attenuation derived from UV to NIR SED fitting overestimates the total SFR for most of our PACS-detected LBGs in age-dependent way: the overestimation factor is higher in younger galaxies.
We present the first results of a project, LSD, aimed at obtaining spatially-resolved, near-infrared spectroscopy of a complete sample of Lyman-Break Galaxies at z~3. Deep observations with adaptive optics resulted in the detection of the main optical lines, such as [OII], Hbeta and [OIII], which are used to study sizes, SFRs, morphologies, gas-phase metallicities, gas fractions and effective yields. Optical, near-IR and Spitzer/IRAC photometry is used to measure stellar mass. We obtain that morphologies are usually complex, with the presence of several peaks of emissions and companions that are not detected in broad-band images. Typical metallicities are 10-50% solar, with a strong evolution of the mass-metallicity relation from lower redshifts. Stellar masses, gas fraction, and evolutionary stages vary significantly among the galaxies, with less massive galaxies showing larger fractions of gas. In contrast with observations in the local universe, effective yields decrease with stellar mass and reach solar values at the low-mass end of the sample. This effect can be reproduced by gas infall with rates of the order of the SFRs. Outflows are present but are not needed to explain the mass-metallicity relation. We conclude that a large fraction of these galaxies are actively creating stars after major episodes of gas infall or merging.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا