Do you want to publish a course? Click here

Evidence of a new quantum state of nano-confined water

203   0   0.0 ( 0 )
 Added by George Reiter
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Deep Inelastic Neutron Scattering provides a means of directly and accurately measuring the momentum distribution of protons in water, which is determined primarily by the protons ground state wavefunction. We find that in water confined on scales of 20A, this wave function responds to the details of the confinement, corresponds to a strongly anharmonic local potential, shows evidence in some cases of coherent delocalization in double wells, and involves changes in zero point kinetic energy of the protons from -40 to +120 meV difference from that of bulk water at room temperature. This behavior appears to be a generic feature of nanoscale confinement. It is exhibited here in 16A inner diameter carbon nanotubes, two different hydrated proton exchange membranes(PEMs), Nafion 1120 and Dow 858, and has been seen earlier in xerogel and 14A diameter carbon nanotubes. The proton conductivity in the PEM samples correlates with the degree of coherent delocalization of the proton.



rate research

Read More

We report a study of the effects of pressure on the diffusivity of water molecules confined in single- wall carbon nanotubes (SWNT) with average mean pore diameter of 16 Angstroms. The measurements were carried out using high-resolution neutron scattering, over the temperature range 220 < T < 260 K, and at two pressure conditions: ambient and elevated pressure. The high pressure data were collected at constant volume on cooling, with P varying from 1.92 kbar at temperature T = 260 K to 1.85 kbar at T = 220 K. Analysis of the observed dynamic structure factor S(Q, E) reveals the presence of two relaxation processes, a faster diffusion component (FC) associated with the motion of caged or restricted molecules, and a slower component arising from the free water molecules diffusing within the SWNT matrix. While the temperature dependence of the slow relaxation time exhibits a Vogel-Fulcher-Tammann law and is non-Arrhenius in nature, the faster component follows an Arrhenius exponential law at both pressure conditions. The application of pressure remarkably slows down the overall molecular dynamics, in agreement with previous observations, but most notably affects the slow relaxation. The faster relaxation shows marginal or no change with pressure within the experimental conditions.
134 - Le Jin , Xinrui Yang , Yu Zhu 2021
Many studies have revealed that confined water chain flipping is closely related to the spatial size and even quantum effects of the confinement environment. Here, we show that these are not the only factors that affect the flipping process of a confined water chain. First-principles calculations and analyses confirm that quantum tunnelling effects from the water chain itself, especially resonant tunnelling, enhance the hydrogen bond rotation process. Importantly, resonant tunnelling can result in tunnelling rotation of hydrogen bonds with a probability close to 1 with only 0.597 eV provided energy. Compared to sequential tunnelling, resonant tunnelling dominants water chain flipping at temperatures up to 20 K higher. Additionally, the ratio of the resonant tunnelling probability to the thermal disturbance probability at 200 K is at least ten times larger than that of sequential tunnelling, which further illustrates the enhancement of hydrogen bond rotation brought about by resonant tunnelling.
We have examined superfluid properties of $^4$He confined to a nano-porous Gelsil glass that has nanopores 2.5 nm in diameter. The pressure-temperature phase diagram was determined by torsional oscillator, heat capacity and pressure studies. The superfluid transition temperature $T_{mathrm c}$ approaches zero at 3.4 MPa, indicating a novel quantum superfluid transition. By heat capacity measurements, the nonsuperfluid phase adjacent to the superfluid and solid phases is identified to be a nanometer-scale, localized Bose condensation state, in which global phase coherence is destroyed. At high pressures, the superfluid density has a $T$-linear term, and $T_{mathrm c}$ is proportional to the zero-temperature superfluid density. These results strongly suggest that phase fluctuations in the superfluid order parameter play a dominant role on the phase diagram and superfluid properties.
We explore superfluidity for $^4$He confined in a porous glass which has nanopores of 2.5 nm in diameter, at pressures up to 5 MPa. With increasing pressure, the superfluidity is drastically suppressed, and the superfluid transition temperature approaches 0 K at $P_c = 3.5$ MPa. The features strongly suggest that the extreme confinement of $^4$He into the nanopores induces a quantum phase transition from superfluid to nonsuperfluid at 0 K, and at $P_c$.
We report the diffusion of water molecules confined in the pores of folded silica materials (FSM-12 with average pore diameter of $sim$ 16 AA), measured by means of quasielastic neutron scattering using the cold neutron chopper spectrometer (CNCS). The goal is to investigate the effect of electric field on the previously observed fast component of nano-confined water. The measurements were taken at temperatures between 220 K and 245 K, and at two electric field values, 0 kV/mm and 2 kV/mm. Similar to the recently observed electric field induced enhancement of the slow translational motion of confined water, there is a an equally important impact of the field on the faster diffusion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا