No Arabic abstract
We explore superfluidity for $^4$He confined in a porous glass which has nanopores of 2.5 nm in diameter, at pressures up to 5 MPa. With increasing pressure, the superfluidity is drastically suppressed, and the superfluid transition temperature approaches 0 K at $P_c = 3.5$ MPa. The features strongly suggest that the extreme confinement of $^4$He into the nanopores induces a quantum phase transition from superfluid to nonsuperfluid at 0 K, and at $P_c$.
We have examined superfluid properties of $^4$He confined to a nano-porous Gelsil glass that has nanopores 2.5 nm in diameter. The pressure-temperature phase diagram was determined by torsional oscillator, heat capacity and pressure studies. The superfluid transition temperature $T_{mathrm c}$ approaches zero at 3.4 MPa, indicating a novel quantum superfluid transition. By heat capacity measurements, the nonsuperfluid phase adjacent to the superfluid and solid phases is identified to be a nanometer-scale, localized Bose condensation state, in which global phase coherence is destroyed. At high pressures, the superfluid density has a $T$-linear term, and $T_{mathrm c}$ is proportional to the zero-temperature superfluid density. These results strongly suggest that phase fluctuations in the superfluid order parameter play a dominant role on the phase diagram and superfluid properties.
We have studied the liquid - solid (L-S) phase transition of ^4He confined in nanoporous glass, which has interconnected nanopores of 2.5 nm in diameter. The L-S boundary is determined by the measurements of pressure and thermal response during slow cooling and warming. Below 1 K, the freezing pressure is elevated to 1.2 MPa from the bulk freezing pressure, and appears to be independent of temperature. The T-independent L-S boundary implies the existence of a localized Bose-Einstein condensation state, in which long-range superfluid coherence is destroyed by narrowness of the nanopores and random potential.
Helium in nanoporous media has attracted much interest as a model Bose system with disorder and confinement. Here we have examined how a change in porous structure by preplating a monolayer of krypton affects the superfluid properties of $^4$He adsorbed or confined in a nanoporous Gelsil glass, which has a three-dimensional interconnected network of nanopores of 5.8 nm in diameter. Isotherms of adsorption and desorption of nitrogen show that monolayer preplating of Kr decreases the effective pore diameter to 4.7 nm and broadens the pore size distribution by about eight times from the sharp distribution of the bare Gelsil sample. The superfluid properties were studied by a torsional oscillator for adsorbed film states and pressurized liquid states, both before and after the monolayer Kr preplating. In the film states, both the superfluid transition temperature $T_{mathrm c}$ and the superfluid density decrease about 10 percent by Kr preplating. The suppression of film superfluidity is attributed to the quantum localization of $^4$He atoms by the randomness in the substrate potential, which is caused by the preplating--induced broadening of the pore size distribution. In the pressurized liquid states, the superfluid density $rho_{mathrm s}$ is found to increase by 10 percent by Kr preplating, whereas $T_{mathrm c}$ is decreased by 2 percent at all pressures. The unexpected enhancement of $rho_{mathrm s}$ might indicate the existence of an unknown disorder effect for confined $^4$He.
In condensed matter physics, the study of electronic states with SU(N) symmetry has attracted considerable and growing attention in recent years, as systems with such a symmetry can often have a spontaneous symmetry-breaking effect giving rise to a novel ground state. For example, pseudospin quantum Hall ferromagnet of broken SU(2) symmetry has been realized by bringing two Landau levels close to degeneracy in a bilayer quantum Hall system. In the past several years, the exploration of collective states in other multi-component quantum Hall systems has emerged. Here we show the conventional pseudospin quantum Hall ferromagnetic states with broken SU(2) symmetry collapsed rapidly into an unexpected state with broken SU(4) symmetry, by in-plane magnetic field in a two-subband GaAs/AlGaAs two-dimensional electron system at filling factor around $ u=4$. Within a narrow tilting range angle of 0.5 degrees, the activation energy increases as much as 12 K. While the origin of this puzzling observation remains to be exploited, we discuss the possibility of a long-sought pairing state of electrons with a four-fold degeneracy.
In this report, an analytic model to predict phase transitions of confined fluids in nano systems is presented and it is used to predict the behavior of the confined fluid in nanotubes and nanoslits. In our approach besides including a third degree of freedom due to wall effect to define the state of the system, the tensorial character for pressure is considered. Using the perturbation theory of statistical mechanics it is shown that the van der Waals equation of state is equally valid for small as well as large systems. The model proposed is shown to predict the liquid-vapor phase transition as well as the critical point in any size confined fluid systems. It is also shown that the critical temperature increases with the size of the nano system and finally it reaches the macroscopic critical temperature value as the diameter of the nanotube (or width of the nanoslit) approaches infinity. The proposed model can also demonstrate the existence of the local density and phase fragmentations during phase transitions in a confined nano system.