No Arabic abstract
We report the diffusion of water molecules confined in the pores of folded silica materials (FSM-12 with average pore diameter of $sim$ 16 AA), measured by means of quasielastic neutron scattering using the cold neutron chopper spectrometer (CNCS). The goal is to investigate the effect of electric field on the previously observed fast component of nano-confined water. The measurements were taken at temperatures between 220 K and 245 K, and at two electric field values, 0 kV/mm and 2 kV/mm. Similar to the recently observed electric field induced enhancement of the slow translational motion of confined water, there is a an equally important impact of the field on the faster diffusion.
We report a study of the effects of pressure on the diffusivity of water molecules confined in single- wall carbon nanotubes (SWNT) with average mean pore diameter of 16 Angstroms. The measurements were carried out using high-resolution neutron scattering, over the temperature range 220 < T < 260 K, and at two pressure conditions: ambient and elevated pressure. The high pressure data were collected at constant volume on cooling, with P varying from 1.92 kbar at temperature T = 260 K to 1.85 kbar at T = 220 K. Analysis of the observed dynamic structure factor S(Q, E) reveals the presence of two relaxation processes, a faster diffusion component (FC) associated with the motion of caged or restricted molecules, and a slower component arising from the free water molecules diffusing within the SWNT matrix. While the temperature dependence of the slow relaxation time exhibits a Vogel-Fulcher-Tammann law and is non-Arrhenius in nature, the faster component follows an Arrhenius exponential law at both pressure conditions. The application of pressure remarkably slows down the overall molecular dynamics, in agreement with previous observations, but most notably affects the slow relaxation. The faster relaxation shows marginal or no change with pressure within the experimental conditions.
The effects of static electric field on the dynamics of lysozyme and its hydration water have been investigated by means of incoherent quasi-elastic neutron scattering (QENS). Measurements were performed on lysozyme samples, hydrated respectively with heavy water (D2O) to capture the protein dynamics, and with light water (H2O), to probe the dynamics of the hydration shell, in the temperature range from 210 $<$ T $<$ 260 K. The hydration fraction in both cases was about $sim$ 0.38 gram of water per gram of dry protein. The field strengths investigated were respectively 0 kV/mm and 2 kV/mm (2 10$^6$ V/m) for the protein hydrated with D2O and 0 kV and 1 kV/mm for the H2O hydrated counterpart. While the overall internal protons dynamics of the protein appears to be unaffected by the application of electric field up to 2 kV/mm, likely due to the stronger intra-molecular interactions, there is also no appreciable quantitative enhancement of the diffusive dynamics of the hydration water, as would be anticipated based on our recent observations in water confined in silica pores under field values of 2.5 kV/mm. This may be due to the difference in surface interactions between water and the two adsorption hosts (silica and protein), or to the existence of a critical threshold field value Ec $sim$ 2-3 kV/mm for increased molecular diffusion, for which electrical breakdown is a limitation for our sample.
Starting from a generic model of a pore/bulk mixture equilibrium, we propose a novel method for modulating the composition of the confined fluid without having to modify the bulk state. To achieve this, two basic mechanisms - sensitivity of the pore filling to the bulk thermodynamic state and electric field effect - are combined. We show by Monte Carlo simulation that the composition can be controlled both in a continuous and in a jumpwise way. Near the bulk demixing instability, we demonstrate a field induced population inversion in the pore. The conditions for the realization of this method should be best met with colloids, but being based on robust and generic mechanisms, it should also be applicable to some molecular fluids.
Deep Inelastic Neutron Scattering provides a means of directly and accurately measuring the momentum distribution of protons in water, which is determined primarily by the protons ground state wavefunction. We find that in water confined on scales of 20A, this wave function responds to the details of the confinement, corresponds to a strongly anharmonic local potential, shows evidence in some cases of coherent delocalization in double wells, and involves changes in zero point kinetic energy of the protons from -40 to +120 meV difference from that of bulk water at room temperature. This behavior appears to be a generic feature of nanoscale confinement. It is exhibited here in 16A inner diameter carbon nanotubes, two different hydrated proton exchange membranes(PEMs), Nafion 1120 and Dow 858, and has been seen earlier in xerogel and 14A diameter carbon nanotubes. The proton conductivity in the PEM samples correlates with the degree of coherent delocalization of the proton.
Motivated by Lehmann-like rotation phenomena in cholesteric drops we study the transverse drift of two types of cholesteric fingers, which form rotating spirals in thin layers of cholesteric liquid crystal in an ac or dc electric field. We show that electrohydrodynamic effects induced by Carr-Helfrich charge separation or flexoelectric charge generation can describe the drift of cholesteric fingers. We argue that the observed Lehmann-like phenomena can be understood on the same basis.