Do you want to publish a course? Click here

Tutorial on Scale and Conformal Symmetries in Diverse Dimensions

281   0   0.0 ( 0 )
 Added by Charles Suggs
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the relation between scale and conformal symmetries in various models and dimensions. We present a dimensional reduction from relativistic to non-relativistic conformal dynamics.



rate research

Read More

A new approach to the analysis of the physical state space of a theory is presented within the general setting of local quantum physics. It also covers theories with long range forces, such as Quantum Electrodynamics. Making use of the notion of charge class, an extension of the concept of superselection sector, infrared problems are avoided by restricting the states to observables localized in a light cone. The charge structure of a theory can be explored in a systematic manner. The present analysis focuses on simple charges, thus including the electric charge. It is shown that any such charge has a conjugate charge. There is a meaningful concept of statistics: the corresponding charge classes are either of Bose or of Fermi type. The family of simple charge classes is in one--to--one correspondence with the irreducible unitary representations of a compact Abelian group. Moreover, there is a meaningful definition of covariant charge classes. Any such class determines a continuous unitary representation of the Poincare group or its covering group satisfying the relativistic spectrum condition. The resulting particle aspects are also briefly discussed.
By exploring a spinor space whose elements carry a spin 1/2 representation of the Lorentz group and satisfy the the Fierz-Pauli-Kofink identities we show that certain symmetries operations form a Lie group. Moreover, we discuss the reflex of the Dirac dynamics in the spinor space. In particular, we show that the usual dynamics for massless spinors in the spacetime is related to an incompressible fluid behavior in the spinor space.
251 - V. V. Varlamov 2014
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries $P$, $T$ and their combination $PT$ are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation $C$ is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation $C$ allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincar{e} group and $SU(3)$-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of $SU(3)$). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of $SU(3)$-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann--Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
We show how to derive asymptotic charges for field theories on manifolds with asymptotic boundary, using the BV-BFV formalism. We also prove that the conservation of said charges follows naturally from the vanishing of the BFV boundary action, and show how this construction generalises Noethers procedure. Using the BV-BFV viewpoint, we resolve the controversy present in the literature, regarding the status of large gauge transformation as symmetries of the asymptotic structure. We show that even though the symplectic structure at the asymptotic boundary is not preserved under these transformations, the failure is governed by the corner data, in agreement with the BV-BFV philosophy. We analyse in detail the case of electrodynamics and the interacting scalar field, for which we present a new type of duality to a sourced two-form model.
Nonrelativistic conformal groups, indexed by l=N/2, are analyzed. Under the assumption that the mass parametrizing the central extension is nonvanishing the coadjoint orbits are classified and described in terms of convenient variables. It is shown that the corresponding dynamical system describes, within Ostrogradski framework, the nonrelativistic particle obeying (N+1)-th order equation of motion. As a special case, the Schroedinger group and the standard Newton equations are obtained for N=1 (l=1/2).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا