Do you want to publish a course? Click here

Nonrelativistic conformal groups and their dynamical realizations

182   0   0.0 ( 0 )
 Added by Pawel Maslanka
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nonrelativistic conformal groups, indexed by l=N/2, are analyzed. Under the assumption that the mass parametrizing the central extension is nonvanishing the coadjoint orbits are classified and described in terms of convenient variables. It is shown that the corresponding dynamical system describes, within Ostrogradski framework, the nonrelativistic particle obeying (N+1)-th order equation of motion. As a special case, the Schroedinger group and the standard Newton equations are obtained for N=1 (l=1/2).



rate research

Read More

We revise the unireps. of $U(2,2)$ describing conformal particles with continuous mass spectrum from a many-body perspective, which shows massive conformal particles as compounds of two correlated massless particles. The statistics of the compound (boson/fermion) depends on the helicity $h$ of the massless components (integer/half-integer). Coherent states (CS) of particle-hole pairs (excitons) are also explicitly constructed as the exponential action of exciton (non-canonical) creation operators on the ground state of unpaired particles. These CS are labeled by points $Z$ ($2times 2$ complex matrices) on the Cartan-Bergman domain $mathbb D_4=U(2,2)/U(2)^2$, and constitute a generalized (matrix) version of Perelomov $U(1,1)$ coherent states labeled by points $z$ on the unit disk $mathbb D_1=U(1,1)/U(1)^2$. Firstly we follow a geometric approach to the construction of CS, orthonormal basis, $U(2,2)$ generators and their matrix elements and symbols in the reproducing kernel Hilbert space $mathcal H_lambda(mathbb D_4)$ of analytic square-integrable holomorphic functions on $mathbb D_4$, which carries a unitary irreducible representation of $U(2,2)$ with index $lambdainmathbb N$ (the conformal or scale dimension). Then we introduce a many-body representation of the previous construction through an oscillator realization of the $U(2,2)$ Lie algebra generators in terms of eight boson operators with constraints. This particle picture allows us for a physical interpretation of our abstract mathematical construction in the many-body jargon. In particular, the index $lambda$ is related to the number $2(lambda-2)$ of unpaired quanta and to the helicity $h=(lambda-2)/2$ of each massless particle forming the massive compound.
80 - M. Gunaydin 2004
We review the novel quasiconformal realizations of exceptional U-duality groups whose quantization lead directly to their minimal unitary irreducible representations. The group $E_{8(8)}$ can be realized as a quasiconformal group in the 57 dimensional charge-entropy space of BPS black hole solutions of maximal N=8 supergravity in four dimensions and leaves invariant lightlike separations with respect to a quartic norm. Similarly $E_{7(7)}$ acts as a conformal group in the 27 dimensional charge space of BPS black hole solutions in five dimensional N=8 supergravity and leaves invariant lightlike separations with respect to a cubic norm. For the exceptional N=2 Maxwell-Einstein supergravity theory the corresponding quasiconformal and conformal groups are $E_{8(-24)}$ and $E_{7(-25)}$, respectively. These conformal and quasiconformal groups act as spectrum generating symmetry groups in five and four dimensions and are isomorphic to the U-duality groups of the corresponding supergravity theories in four and three dimensions, respectively. Hence the spectra of these theories are expected to form unitary representations of these groups whose minimal unitary realizations are also reviewed.
We present a nonlinear realization of E_8 on a space of 57 dimensions, which is quasiconformal in the sense that it leaves invariant a suitably defined ``light cone in 57 dimensions. This realization, which is related to the Freudenthal triple system associated with the unique exceptional Jordan algebra over the split octonions, contains previous conformal realizations of the lower rank exceptional Lie groups on generalized space times, and in particular a conformal realization of E_7 on a 27 dimensional vector space which we exhibit explicitly. Possible applications of our results to supergravity and M-Theory are briefly mentioned.
147 - Bindu A. Bambah 2003
A way to construct and classify the three dimensional polynomially deformed algebras is given and the irreducible representations is presented. for the quadratic algebras 4 different algebras are obtained and for cubic algebras 12 different classes are constructed. Applications to quantum mechanical systems including supersymmetric quantum mechanics are discussed
270 - R. Jackiw , S.-Y. Pi 2011
We review the relation between scale and conformal symmetries in various models and dimensions. We present a dimensional reduction from relativistic to non-relativistic conformal dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا