No Arabic abstract
A new approach to the analysis of the physical state space of a theory is presented within the general setting of local quantum physics. It also covers theories with long range forces, such as Quantum Electrodynamics. Making use of the notion of charge class, an extension of the concept of superselection sector, infrared problems are avoided by restricting the states to observables localized in a light cone. The charge structure of a theory can be explored in a systematic manner. The present analysis focuses on simple charges, thus including the electric charge. It is shown that any such charge has a conjugate charge. There is a meaningful concept of statistics: the corresponding charge classes are either of Bose or of Fermi type. The family of simple charge classes is in one--to--one correspondence with the irreducible unitary representations of a compact Abelian group. Moreover, there is a meaningful definition of covariant charge classes. Any such class determines a continuous unitary representation of the Poincare group or its covering group satisfying the relativistic spectrum condition. The resulting particle aspects are also briefly discussed.
When discussing consequences of symmetries of dynamical systems based on Noethers first theorem, most standard textbooks on classical or quantum mechanics present a conclusion stating that a global continuous Lie symmetry implies the existence of a time independent conserved Noether charge which is the generator of the action on phase space of that symmetry, and which necessarily must as well commute with the Hamiltonian. However this need not be so, nor does that statement do justice to the complete scope and reach of Noethers first theorem. Rather a much less restrictive statement applies, namely that the corresponding Noether charge as an observable over phase space may in fact possess an explicit time dependency, and yet define a constant of the motion by having a commutator with the Hamiltonian which is nonvanishing, thus indeed defining a dynamical conserved quantity. Furthermore, and this certainly within the Hamiltonian formulation, the converse statement is valid as well, namely that any dynamical constant of motion is necessarily the Noether charge of some symmetry leaving the systems action invariant up to some total time derivative contribution. The present contribution revisits these different points and their consequences, straightaway within the Hamiltonian formulation which is the most appropriate for such issues. Explicit illustrations are also provided through three general but simple enough classes of systems.
We review the relation between scale and conformal symmetries in various models and dimensions. We present a dimensional reduction from relativistic to non-relativistic conformal dynamics.
By exploring a spinor space whose elements carry a spin 1/2 representation of the Lorentz group and satisfy the the Fierz-Pauli-Kofink identities we show that certain symmetries operations form a Lie group. Moreover, we discuss the reflex of the Dirac dynamics in the spinor space. In particular, we show that the usual dynamics for massless spinors in the spacetime is related to an incompressible fluid behavior in the spinor space.
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries $P$, $T$ and their combination $PT$ are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation $C$ is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation $C$ allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincar{e} group and $SU(3)$-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of $SU(3)$). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of $SU(3)$-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann--Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal distances in the Moyal plane, revealing a deep connection between geometry and statistics. In this paper, using the same algorithm, the Connes spectral distance has been calculated in the Hilbert-Schmidt operatorial formulation for the fuzzy sphere whose spatial coordinates satisfy the $su(2)$ algebra. This has been computed for both the discrete, as well as for the Perelemovs $SU(2)$ coherent state. Here also, we get a connection between geometry and statistics which is shown by computing the infinitesimal distance between mixed states on the quantum Hilbert space of a particular fuzzy sphere, indexed by $ninmathbb{Z}/2$.