Do you want to publish a course? Click here

Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity

145   0   0.0 ( 0 )
 Added by Kristian Madsen
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure the detuning-dependent dynamics of a quasi-resonantly excited single quantum dot coupled to a micropillar cavity. The system is modeled with the dissipative Jaynes-Cummings model where all experimental parameters are determined by explicit measurements. We observe non-Markovian dynamics when the quantum dot is tuned into resonance with the cavity leading to a non-exponential decay in time. Excellent agreement between experiment and theory is observed with no free parameters providing the first quantitative description of an all-solid-state cavity QED system based on quantum dot emitters.



rate research

Read More

We theoretically describe the quantum Zeno effect in a spin-photon interface represented by a charged quantum dot in a micropillar cavity. The electron spin in this system entangles with the polarization of the transmitted photons, and their continuous detection leads to the slowing of the electron spin precession in external magnetic field and induces the spin relaxation. We obtain a microscopic expression for the spin measurement rate and calculate the second and fourth order correlation functions of the spin noise, which evidence the change of the spin statistics due to the quantum Zeno effect. We demonstrate, that the quantum limit for the spin measurement can be reached for any probe frequency using the homodyne nondemolition spin measurement, which maximizes the rate of the quantum information gain.
We demonstrate reversible strain-tuning of a quantum dot strongly coupled to a photonic crystal cavity. We observe an average redshift of 0.45 nm for quantum dots located inside the cavity membrane, achieved with an electric field of 15 kV/cm applied to a piezo-electric actuator. Using this technique, we demonstrate the ability to tune a quantum dot into resonance with a photonic crystal cavity in the strong coupling regime, resulting in a clear anti-crossing. The bare cavity resonance is less sensitive to strain than the quantum dot and shifts by only 0.078 nm at the maximum applied electric field.
77 - M. Schwab , H. Kurtze , T. Auer 2006
The light emission of self-assembled (In,Ga)As/GaAs quantum dots embedded in single GaAs-based micropillars has been studied by time-resolved photoluminescence spectroscopy. The altered spontaneous emission is found to be accompanied by a non-exponential decay of the photoluminescence where the decay rate strongly depends on the excitation intensity. A microscopic theory of the quantum dot photon emission is used to explain both, the non-exponential decay and its intensity dependence. Also the transition from spontaneous to stimulated emission is studied.
In this work we demonstrate theoretically how to use external laser field to control the population inversion of a single quantum dot exciton qubit in a nanocavity. We consider the Jaynes-Cummings model to describe the system, and the incoherent losses were take into account by using Lindblad operators. We have demonstrated how to prepare the initial state in a superposition of the exciton in the ground state and the cavity in a coherent state. The effects of exciton-cavity detuning, the laser-cavity detunings, the pulse area and losses over the qubit dynamics are analyzed. We also show how to use a continuous laser pumping in resonance with the cavity mode to sustain a coherent state inside the cavity, providing some protection to the qubit against cavity loss.
172 - P. Kaer , P. Lodahl , A.-P. Jauho 2012
We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity QED systems. Employing an exact diagonalization approach we find large differences compared to standard methods. An important finding is that short-time non-Markovian effects limit the maximal attainable indistinguishability. The results are explained using a polariton picture that yields valuable insight into the phonon-induced dephasing dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا