Do you want to publish a course? Click here

Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: The role of non-Markovian phonon-induced decoherence

171   0   0.0 ( 0 )
 Added by Per Kaer
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity QED systems. Employing an exact diagonalization approach we find large differences compared to standard methods. An important finding is that short-time non-Markovian effects limit the maximal attainable indistinguishability. The results are explained using a polariton picture that yields valuable insight into the phonon-induced dephasing dynamics.



rate research

Read More

We investigate the influence of electron-phonon interactions on the dynamical properties of a quantum-dot-cavity QED system. We show that non-Markovian effects in the phonon reservoir lead to strong changes in the dynamics, arising from photon-assisted dephasing processes, not present in Markovian treatments. A pronounced consequence is the emergence of a phonon induced spectral asymmetry when detuning the cavity from the quantum-dot resonance. The asymmetry can only be explained when considering the polaritonic quasi-particle nature of the quantum-dot-cavity system. Furthermore, a temperature induced reduction of the light-matter coupling strength is found to be relevant in interpreting experimental data, especially in the strong coupling regime.
We measure the detuning-dependent dynamics of a quasi-resonantly excited single quantum dot coupled to a micropillar cavity. The system is modeled with the dissipative Jaynes-Cummings model where all experimental parameters are determined by explicit measurements. We observe non-Markovian dynamics when the quantum dot is tuned into resonance with the cavity leading to a non-exponential decay in time. Excellent agreement between experiment and theory is observed with no free parameters providing the first quantitative description of an all-solid-state cavity QED system based on quantum dot emitters.
We investigate the influence of the electron-phonon interaction on the decay dynamics of a quantum dot coupled to an optical microcavity. We show that the electron-phonon interaction has important consequences on the dynamics, especially when the quantum dot and cavity are tuned out of resonance, in which case the phonons may add or remove energy leading to an effective non-resonant coupling between quantum dot and cavity. The system is investigated using two different theoretical approaches: (i) a second-order expansion in the bare phonon coupling constant, and (ii) an expansion in a polaron-photon coupling constant, arising from the polaron transformation which allows an accurate description at high temperatures. In the low temperature regime we find excellent agreement between the two approaches. An extensive study of the quantum dot decay dynamics is performed, where important parameter dependencies are covered. We find that in general the electron-phonon interaction gives rise to a greatly increased bandwidth of the coupling between quantum dot and cavity. At low temperature an asymmetry in the quantum dot decay rate is observed, leading to a faster decay when the quantum dot has a larger energy than to the cavity. We explain this as due to the absence of phonon absorption processes. Furthermore, we derive approximate analytical expressions for the quantum dot decay rate, applicable when the cavity can be adiabatically eliminated. The expressions lead to a clear interpretation of the physics and emphasizes the important role played by the effective phonon density, describing the availability of phonons for scattering, in quantum dot decay dynamics. Based on the analytical expressions we present the parameter regimes where phonon effects are expected to be important. Also, we include all technical developments in appendices.
The properties of an unconventional, single mode phonon bath coupled to a quantum dot, are investigated within the rotating wave approximation. The electron current through the dot induces an out of equilibrium bath, with a phonon distribution qualitatively different from the thermal one. In selected transport regimes, such a distribution is characterized by a peculiar selective population of few phonon modes and can exhibit a sub-Poissonian behavior. It is shown that such a sub-Poissonian behavior is favored by a double occupancy of the dot. The crossover from a unequilibrated to a conventional thermal bath is explored, and the limitations of the rotating wave approximation are discussed.
We report on simulations of the degree of polarization entanglement of photon pairs simultaneously emitted from a quantum dot-cavity system that demand revisiting the role of phonons. Since coherence is a fundamental precondition for entanglement and phonons are known to be a major source of decoherence, it seems unavoidable that phonons can only degrade entanglement. In contrast, we demonstrate that phonons can cause a degree of entanglement that even surpasses the corresponding value for the phonon-free case. In particular, we consider the situation of comparatively small biexciton binding energies and either finite exciton or cavity mode splitting. In both cases, combinations of the splitting and the dot-cavity coupling strength are found where the entanglement exhibits a nonmonotonic temperature dependence which enables entanglement above the phonon-free level in a finite parameter range. This unusual behavior can be explained by phonon-induced renormalizations of the dot-cavity coupling $g$ in combination with a nonmonotonic dependence of the entanglement on $g$ that is present already without phonons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا