Do you want to publish a course? Click here

Perturbation Theory on the Non-Commutative Plane with a Singular Potential

121   0   0.0 ( 0 )
 Added by H. Falomir
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this article we study the problem of a non-relativistic particle in the presence of a singular potential in the noncommutative plane. The potential contains a term proportional to $1/R^2$, where $R^2$ is the squared distance to the origin in the noncommutative plane. We find that the spectrum of energies is non analytic in the noncommutativity parameter $theta$.



rate research

Read More

We investigate the properties of two- and three-dimensional non-commutative fermion gases with fixed total z-component of angular momentum, J_z, and at high density for the simplest form of non-commutativity involving constant spatial commutators. Analytic expressions for the entropy and pressure are found. The entropy exhibits non-extensive behaviour while the pressure reveals the presence of incompressibility in two, but not in three dimensions. Remarkably, for two-dimensional systems close to the incompressible density, the entropy is proportional to the square root of the system size, i.e., for such systems the number of microscopic degrees of freedom is determined by the circumference, rather than the area (size) of the system. The absence of incompressibility in three dimensions, and subsequently also the absence of a scaling law for the entropy analogous to the one found in two dimensions, is attributed to the form of the non-commutativity used here, the breaking of the rotational symmetry it implies and the subsequent constraint on J_z, rather than the angular momentum J. Restoring the rotational symmetry while constraining the total angular momentum J seems to be crucial for incompressibility in three dimensions. We briefly discuss ways in which this may be done and point out possible obstacles.
We consider Yang-Mills theory with the U(1) gauge group on a non-commutative plane. Perturbatively it was observed that the invariance of this theory under area-preserving diffeomorphisms (APDs) breaks down to a rigid subgroup SL(2,R). Here we present explicit results for the APD symmetry breaking at finite gauge coupling and finite non-commutativity. They are based on lattice simulations and measurements of Wilson loops with the same area but with a variety of different shapes. Our results are consistent with the expected loss of invariance under APDs. Moreover, they strongly suggest that non-perturbatively the SL(2,R) symmetry does not persist either.
We give three short proofs of the Makeenko-Migdal equation for the Yang-Mills measure on the plane, two using the edge variables and one using the loop or lasso variables. Our proofs are significantly simpler than the earlier pioneering rigorous proofs given by T. Levy and by A. Dahlqvist. In particular, our proofs are local in nature, in that they involve only derivatives with respect to variables adjacent to the crossing in question. In an accompanying paper with F. Gabriel, we will show that two of our proofs can be adapted to the case of Yang-Mills theory on a compact surface.
We study the pole structure of the $zeta$-function associated to the Hamiltonian $H$ of a quantum mechanical particle living in the half-line $mathbf{R}^+$, subject to the singular potential $g x^{-2}+x^2$. We show that $H$ admits nontrivial self-adjoint extensions (SAE) in a given range of values of the parameter $g$. The $zeta$-functions of these operators present poles which depend on $g$ and, in general, do not coincide with half an integer (they can even be irrational). The corresponding residues depend on the SAE considered.
The spectrum of a charged particle coupled to Aharonov-Bohm/anyon gauge fields displays a nonanalytic behavior in the coupling constant. Within perturbation theory, this gives rise to certain singularities which can be handled by adding a repulsive contact term to the Hamiltonian. We discuss the case of smeared flux tubes with an arbitrary profile and show that the contact term can be interpreted as the coupling of a magnetic moment spinlike degree of freedom to the magnetic field inside the flux tube. We also clarify the ansatz for the redefinition of the wave function.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا