Do you want to publish a course? Click here

Pole structure of the Hamiltonian $zeta$-function for a singular potential

196   0   0.0 ( 0 )
 Added by H. Falomir
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the pole structure of the $zeta$-function associated to the Hamiltonian $H$ of a quantum mechanical particle living in the half-line $mathbf{R}^+$, subject to the singular potential $g x^{-2}+x^2$. We show that $H$ admits nontrivial self-adjoint extensions (SAE) in a given range of values of the parameter $g$. The $zeta$-functions of these operators present poles which depend on $g$ and, in general, do not coincide with half an integer (they can even be irrational). The corresponding residues depend on the SAE considered.



rate research

Read More

We consider the resolvent of a system of first order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of $lambda$ which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding $zeta$ and $eta$-functions are also discussed.
We introduce a polynomial zeta function $zeta^{(p)}_{P_n}$, related to certain problems of mathematical physics, and compute its value and the value of its first derivative at the origin $s=0$, by means of a very simple technique. As an application, we compute the determinant of the Dirac operator on quaternionic vector spaces.
We introduce a version of the Hamiltonian formalism based on the Clairaut equation theory, which allows us a self-consistent description of systems with degenerate (or singular) Lagrangian. A generalization of the Legendre transform to the case, when the Hessian is zero is done using the mixed (envelope/general) solutions of the multidimensional Clairaut equation. The corresponding system of equations of motion is equivalent to the initial Lagrange equations, but contains nondynamical momenta and unresolved velocities. This system is reduced to the physical phase space and presented in the Hamiltonian form by introducing a new (non-Lie) bracket.
In this article we study the problem of a non-relativistic particle in the presence of a singular potential in the noncommutative plane. The potential contains a term proportional to $1/R^2$, where $R^2$ is the squared distance to the origin in the noncommutative plane. We find that the spectrum of energies is non analytic in the noncommutativity parameter $theta$.
In this paper we shall study vacuum fluctuations of a single scalar field with Dirichlet boundary conditions in a finite but very long line. The spectral heat kernel, the heat partition function and the spectral zeta function are calculated in terms of Riemann Theta functions, the error function, and hypergeometric PFQ functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا