Do you want to publish a course? Click here

QCD relics from the early Universe

125   0   0.0 ( 0 )
 Added by Dmitri Antonov
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We suggest the possibility of creation in the early Universe of stable domains of radius a few kilometers wide, formed by coherently excited states of $pi$-mesons. Such domains appear dark to an external observer, since the decay rate of the said coherent pionic states into photons is vanishingly small. The related thermal insulation of the domains from the outer world could have allowed them to survive till present days. The estimated maximum radius and the period of rotation of such objects turn out to be compatible with those of certain pulsars.



rate research

Read More

The hot dense environment of the early universe is known to have produced large numbers of baryons, photons, and neutrinos. These extreme conditions may have also produced other long-lived species, including new light particles (such as axions or sterile neutrinos) or gravitational waves. The gravitational effects of any such light relics can be observed through their unique imprint in the cosmic microwave background (CMB), the large-scale structure, and the primordial light element abundances, and are important in determining the initial conditions of the universe. We argue that future cosmological observations, in particular improved maps of the CMB on small angular scales, can be orders of magnitude more sensitive for probing the thermal history of the early universe than current experiments. These observations offer a unique and broad discovery space for new physics in the dark sector and beyond, even when its effects would not be visible in terrestrial experiments or in astrophysical environments. A detection of an excess light relic abundance would be a clear indication of new physics and would provide the first direct information about the universe between the times of reheating and neutrino decoupling one second later.
We compute the mass function of bound states of Asymmetric Dark Matter--nuggets--synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.
98 - A. Tawfik 2008
We discuss the cosmological consequences of QCD phase transition(s) on the early universe. We argue that our recent knowledge about the transport properties of quark-gluon plasma (QGP) should throw additional lights on the actual time evolution of our universe. Understanding the nature of QCD phase transition(s), which can be studied in lattice gauge theory and verified in heavy ion experiments, provides an explanation for cosmological phenomenon stem from early universe.
X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the inter-galactic medium, potentially having a significant contribution to the heating and reionization of the early Universe. The two most important sources of X-ray photons in the Universe are active galactic nuclei (AGN) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z~ 20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z>6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by ~4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of ~300 Myr and then decreases gradually at later times, showing little variation for mean stellar ages > 3 Gyr. Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.
We consider relatively heavy neutrinos $ u_H$, mostly contributing to a sterile state $ u_s$, with mass in the range 10 MeV $lesssim m_s lesssim m_{pi} sim 135$ MeV, which are thermally produced in the early universe in collisional processes involving active neutrinos, and freezing out after the QCD phase transition. If these neutrinos decay after the active neutrino decoupling, they generate extra neutrino radiation, but also contribute to entropy production. Thus, they alter the value of the effective number of neutrino species $N_{rm eff}$ as for instance measured by the cosmic microwave background (CMB), as well as affect primordial nucleosynthesis (BBN), notably ${}^4$He production. We provide a detailed account of the solution of the relevant Boltzmann equations. We also identify the parameter space allowed by current Planck satellite data and forecast the parameter space probed by future Stage-4 ground-based CMB observations, expected to match or surpass BBN sensitivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا