Do you want to publish a course? Click here

Energy Feedback from X-ray Binaries in the Early Universe

118   0   0.0 ( 0 )
 Added by Tassos Fragos
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the inter-galactic medium, potentially having a significant contribution to the heating and reionization of the early Universe. The two most important sources of X-ray photons in the Universe are active galactic nuclei (AGN) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z~ 20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z>6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by ~4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of ~300 Myr and then decreases gradually at later times, showing little variation for mean stellar ages > 3 Gyr. Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.



rate research

Read More

Massive stars at redshifts z > 6 are predicted to have played a pivotal role in cosmological reionization as luminous sources of ultra-violet (UV) photons. However, the remnants of these massive stars could be equally important as X-ray luminous (L_X 1e38 erg/s) high-mass X-ray binaries (HMXBs). Because the absorption cross section of neutral hydrogen decreases sharply with photon energy (proportional to the inverse cube), X-rays can escape more freely than UV photons from the star-forming regions in which they are produced, allowing HMXBs to make a potentially significant contribution to the ionizing X-ray background during reionization. In this paper, we explore the ionizing power of HMXBs at redshifts z > 6 using a Monte Carlo model for a coeval stellar population of main sequence stars and HMXBs. Using the archetypal Galactic HMXB Cygnus X-1 as our template, we propose a composite HMXB spectral energy distribution consisting of black-body and power-law components, whose contributions depend on the accretion state of the system. We determine the time-dependent ionizing power of a combined population of UV-luminous stars and X-ray luminous HMXBs, and deduce fitting formulae for the boost in the populations ionizing power arising from HMXBs; these fits allow for simple implementation of HMXB feedback in numerical simulations. Based on this analysis, we estimate the contribution of high redshift HMXBs to the present-day soft X-ray background, and we show that it is a factor of ~100-1000 smaller than the observed limit. Finally, we discuss the implications of our results for the role of HMXBs in reionization and in high redshift galaxy formation.
176 - Philip Kaaret 2014
High mass X-ray binaries (HMXBs) may have had a significant impact on the heating of the intergalactic medium in the early universe. Study of HMXBs in nearby, low metallicity galaxies that are local analogues to early galaxies can help us understand early HMXBs. The total luminosity of HMXB populations is dominated by sources at high luminosities. These sources exhibit X-ray spectra that show curvature above 2 keV and the same is likely true of HMXB populations at high redshifts. The spectral curvature changes the K-correction for X-rays from HMXBs in a manner that weakens the constraints on X-ray emission of early HMXBs obtained from the soft X-ray background. Applied to deep X-ray surveys of star forming galaxies, the modified K-correction suggests a moderate increase in the ratio of X-ray luminosity to star formation rate at intermediate redshifts, z=3-5, and is consistent with a large enhancement at high redshifts, z=6-7.
The ISM evolution of elliptical galaxies experiencing feedback from accretion onto a central black hole was studied recently with high-resolution 1D hydrodynamical simulations including radiative heating and pressure effects, a RIAF-like radiative efficiency, mechanical input from AGN winds, and accretion-driven starbursts. Here we focus on the observational properties of the models in the X-ray band (nuclear luminosity; hot ISM luminosity and temperature; temperature and brightness profiles during quiescence and during outbursts). The nuclear bursts last for ~10^7 yr, with a duty-cycle of a few X (10^-3-10^-2); the present epoch bolometric nuclear emission is very sub-Eddington. The ISM thermal luminosity lx oscillates in phase with the nuclear one; this helps reproduce statistically the observed large lx variation. In quiescence the temperature profile has a negative gradient; thanks to past outbursts, the brightness profile lacks the steep shape typical of inflowing models. Outbursts produce disturbances in these profiles. Most significantly, a hot bubble from shocked hot gas is inflated at the galaxy center; the bubble would be conical in shape, and show radio emission. The ISM resumes a smooth appearance on a time-scale of ~200 Myr; the duty-cycle of perturbances in the ISM is of the order of 5-10%. From the present analysis, additional input physics is important in the ISM-black hole coevolution, to fully account for the properties of real galaxies, as a confining external medium and a jet. The jet will reduce further the mass available for accretion (and then the Eddington ratio $l$), and may help, together with an external pressure, to produce flat or positive temperature gradient profiles (observed in high density environments). Alternatively, $l$ can be reduced if the switch from high to low radiative efficiency takes place at a larger $l$ than routinely assumed.
Recent work suggests that the first generation of stars, the so-called Population III (Pop III), could have formed primarily in binaries or as members of small multiple systems. Here we investigate the impact of X-ray feedback from High-Mass X-ray Binaries (HMXBs) left behind in stellar binary systems after the primary forms a black hole (BH), accreting gas at a high rate from the companion, a process that is thought to be favored at the low metallicities characteristic of high-redshift gas. Thanks to their large mean free path, X-rays are capable of preionizing and preheating the gas in the intergalactic medium (IGM) and in haloes long before the reionization of the Universe is complete, and thus could have strongly affected the formation of subsequent generations of stars as well as reionization. We have carried out zoomed hydrodynamical cosmological simulations of minihaloes, accounting for the formation of Pop III stars and their collapse into BHs and HMXBs, and the associated radiation-hydrodynamic feedback from UV and X-ray photons. We find no strong net feedback from HMXBs on the simulated star formation history. On the other hand, the preheating of the IGM by HMXBs leads to a strong suppression of small-scale structures and significantly lowers the recombination rate in the IGM, thus yielding a net positive feedback on reionization. We further show that X-ray feedback from HMXBs can augment the ionizing feedback from the Pop III progenitor stars to suppress gas accretion onto the first BHs, limiting their growth into supermassive BHs. Finally, we show that X-ray ionization by HMXBs leaves distinct signatures in the properties of the high-redshift hydrogen that may be probed in upcoming observations of the redshifted 21cm spin-flip line.
Any abundance of black holes that was present in the early universe will evolve as matter, making up an increasingly large fraction of the total energy density as space expands. This motivates us to consider scenarios in which the early universe included an era that was dominated by low-mass ($M < 5times 10^8$ g) black holes which evaporate prior to primordial nucleosynthesis. In significant regions of parameter space, these black holes will become gravitationally bound within binary systems, and undergo mergers before evaporating. Such mergers result in three potentially observable signatures. First, any black holes that have undergone one or more mergers will possess substantial angular momentum, causing their Hawking evaporation to produce significant quantities of high-energy gravitons. These products of Hawking evaporation are predicted to constitute a background of hot ($sim$eV-keV) gravitons today, with an energy density corresponding to $Delta N_{rm eff} sim 0.01-0.03$. Second, these mergers will produce a stochastic background of high-frequency gravitational waves. And third, the energy density of these gravitational waves can be as large as $Delta N_{rm eff} sim 0.3$, depending on the length of time between the mergers and evaporation. These signals are each potentially within the reach of future measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا