No Arabic abstract
We consider relatively heavy neutrinos $ u_H$, mostly contributing to a sterile state $ u_s$, with mass in the range 10 MeV $lesssim m_s lesssim m_{pi} sim 135$ MeV, which are thermally produced in the early universe in collisional processes involving active neutrinos, and freezing out after the QCD phase transition. If these neutrinos decay after the active neutrino decoupling, they generate extra neutrino radiation, but also contribute to entropy production. Thus, they alter the value of the effective number of neutrino species $N_{rm eff}$ as for instance measured by the cosmic microwave background (CMB), as well as affect primordial nucleosynthesis (BBN), notably ${}^4$He production. We provide a detailed account of the solution of the relevant Boltzmann equations. We also identify the parameter space allowed by current Planck satellite data and forecast the parameter space probed by future Stage-4 ground-based CMB observations, expected to match or surpass BBN sensitivity.
Neutrinos, being the only fermions in the Standard Model of Particle Physics that do not possess electromagnetic or color charges, have the unique opportunity to communicate with fermions outside the Standard Model through mass mixing. Such Standard Model-singlet fermions are generally referred to as sterile neutrinos. In this review article, we discuss the theoretical and experimental motivation for sterile neutrinos, as well as their phenomenological consequences. With the benefit of hindsight in 2020, we point out potentially viable and interesting ideas. We focus in particular on sterile neutrinos that are light enough to participate in neutrino oscillations, but we also comment on the benefits of introducing heavier sterile states. We discuss the phenomenology of eV-scale sterile neutrinos in terrestrial experiments and in cosmology, we survey the global data, and we highlight various intriguing anomalies. We also expose the severe tension that exists between different data sets and prevents a consistent interpretation of the global data in at least the simplest sterile neutrino models. We discuss non-minimal scenarios that may alleviate some of this tension. We briefly review the status of keV-scale sterile neutrinos as dark matter and the possibility of explaining the matter-antimatter asymmetry of the Universe through leptogenesis driven by yet heavier sterile neutrinos.
Sterile neutrinos are natural extensions to the standard model of particle physics in neutrino mass generation mechanisms. If they are relatively light, less than approximately 10 keV, they can alter cosmology significantly, from the early Universe to the matter and radiation energy density today. Here, we review the cosmological role such light sterile neutrinos can play from the early Universe, including production of keV-scale sterile neutrinos as dark matter candidates, and dynamics of light eV-scale sterile neutrinos during the weakly-coupled active neutrino era. We review proposed signatures of light sterile neutrinos in cosmic microwave background and large scale structure data. We also discuss keV-scale sterile neutrino dark matter decay signatures in X-ray observations, including recent candidate $sim$3.5 keV X-ray line detections consistent with the decay of a $sim$7 keV sterile neutrino dark matter particle.
We investigate how sterile neutrinos with a range of masses influence cosmology in MeV-scale reheating temperature scenarios. By computing the production of sterile neutrinos through the combination of mixing and scattering in the early Universe, we find that light sterile neutrinos, with masses and mixings as inferred from short-baseline neutrino oscillation experiments, are consistent with big-bang nucleosynthesis (BBN) and cosmic microwave background (CMB) radiation for the reheating temperature of ${cal O}(1)$ MeV if the parent particle responsible for reheating decays into electromagnetic components (radiative decay). In contrast, if the parent particle mainly decays into hadrons (hadronic decay), the bound from BBN becomes more stringent. In this case, the existence of the light sterile neutrinos can be cosmologically excluded, depending on the mass and the hadronic branching ratio of the parent particle.
A detailed discussion is given of the analysis of recent data to obtain improved upper bounds on the couplings $|U_{e4}|^2$ and $|U_{mu 4}|^2$ for a mainly sterile neutrino mass eigenstate $ u_4$. Using the excellent agreement among ${cal F}t$ values for superallowed nuclear beta decay, an improved upper limit is derived for emission of a $ u_4$. The agreement of the ratios of branching ratios $R^{(pi)}_{e/mu}=BR(pi^+ to e^+ u_e)/BR(pi^+ to mu^+ u_mu)$, $R^{(K)}_{e/mu}$, $R^{(D_s)}_{e/tau}$, $R^{(D_s)}_{mu/tau}$, and $R^{(D)}_{e/tau}$, and the branching ratios $BR(B^+rightarrow e^+ u_e)$ and $BR(B^+rightarrow mu^+ u_mu)$ decays with predictions of the Standard Model, is utilized to derive new constraints on $ u_4$ emission covering the $ u_4$ mass range from MeV to GeV. We also discuss constraints from peak search experiments probing for emission of a $ u_4$ via lepton mixing, as well as constraints from pion beta decay, CKM unitarity, $mu$ decay, leptonic $tau$ decay, and other experimental inputs.
We study the induced primordial gravitational waves (GW) coming from the effect of scalar perturbation on the tensor perturbation at the second order of cosmological perturbation theory. We use the evolution of the standard model degrees of freedom with respect to temperature in the early Universe to compute the induced gravitational waves bakcground. Our result shows that the spectrum of the induced GW is affected differently by the standard model degrees of freedom than the GW coming from first order tensor perturbation. This phenomenon is due to the presence of scalar perturbations as a source for tensor perturbations and it is effective around the quark gluon deconfinement and electroweak transition. In case of considering a scalar spectral index larger than one at small scales or a non-Gaussian curvature power spectrum this effect can be observed by gravitational wave observatories.