Do you want to publish a course? Click here

Cosmic Origins Spectrograph and FUSE Observations of T ~ 10^5 K Gas In A Nearby Galaxy Filament

143   0   0.0 ( 0 )
 Added by Anand Narayanan
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detection of a broad Ly-alpha absorber (BLA) with a matching O VI line in the nearby universe. The BLA is detected at z = 0.01028 in the high S/N spectrum of Mrk 290 obtained using the Cosmic Origins Spectrograph. The Ly-alpha absorption has two components, with b(HI) = 55 +/- 1 km/s and b(HI) = 33 +/- 1 km/s, separated in velocity by v ~ 115 km/s. The O VI, detected by FUSE at z = 0.01027, has a b(OVI) = 29 +/- 3 km/s and is kinematically well aligned with the broader HI component. The different line widths of the BLA and OVI suggest a temperature of T = 1.4 x 10^5 K in the absorber. The observed line strength ratios and line widths favor an ionization scenario in which both ion-electron collisions and UV photons contribute to the ionization in the gas. Such a model requires a low-metallicity of -1.7 dex, ionization parameter of log U ~ -1.4, a large total hydrogen column density of N(H) ~ 4 x 10^19 cm^-2, and a path length of 400 kpc. The line of sight to Mrk 290 intercepts at the redshift of the absorber, a megaparsec scale filamentary structure extending over 20 deg in the sky, with several luminous galaxies distributed within 1.5 Mpc projected distance from the absorber. The collisionally ionized gas in this absorber is likely tracing a shock-heated gaseous structure, consistent with a few different scenarios for the origin, including an over-dense region of the WHIM in the galaxy filament or highly ionized gas in the extended halo of one of the galaxies in the filament. In general, BLAs with metals provide an efficient means to study T ~ 10^5 - 10^6 K gas in galaxy halos and in the intergalactic medium. A substantial fraction of the baryons missing from the present universe is predicted to be in such environments in the form of highly ionized plasma.



rate research

Read More

We present new Hubble Space Telescope (HST)/Cosmic Origins Spectrograph observations of the Narrow-Line Seyfert 1 galaxy NGC 4051. These data were obtained as part of a coordinated observing program including X-ray observations with the Chandra/High Energy Transmission Grating (HETG) Spectrometer and Suzaku. We detected nine kinematic components of UV absorption, which were previously identified using the HST/Space Telescope Imaging Spectrograph. None of the absorption components showed evidence for changes in column density or profile within the sim 10 yr between the STIS and COS observations, which we interpret as evidence of 1) saturation, for the stronger components, or 2) very low densities, i.e., n_H < 1 cm^-3, for the weaker components. After applying a +200 km s^-1 offset to the HETG spectrum, we found that the radial velocities of the UV absorbers lay within the O VII profile. Based on photoionization models, we suggest that, while UV components 2, 5 and 7 produce significant O VII absorption, the bulk of the X-ray absorption detected in the HETG analysis occurs in more highly ionized gas. Moreover, the mass loss rate is dominated by high ionization gas which lacks a significant UV footprint.
The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F_lambda ~ 1.0E10-14 ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.
116 - V. Vacca , M. Murgia , F. Govoni 2018
We report the detection of diffuse radio emission which might be connected to a large-scale filament of the cosmic web covering a 8deg x 8deg area in the sky, likely associated with a z~0.1 over-density traced by nine massive galaxy clusters. In this work, we present radio observations of this region taken with the Sardinia Radio Telescope. Two of the clusters in the field host a powerful radio halo sustained by violent ongoing mergers and provide direct proof of intra-cluster magnetic fields. In order to investigate the presence of large-scale diffuse radio synchrotron emission in and beyond the galaxy clusters in this complex system, we combined the data taken at 1.4 GHz obtained with the Sardinia Radio Telescope with higher resolution data taken with the NRAO VLA Sky Survey. We found 28 candidate new sources with a size larger and X-ray emission fainter than known diffuse large-scale synchrotron cluster sources for a given radio power. This new population is potentially the tip of the iceberg of a class of diffuse large-scale synchrotron sources associated with the filaments of the cosmic web. In addition, we found in the field a candidate new giant radio galaxy.
Recent Chandra and XMM X-ray observations of rich clusters of galaxies have shown that the amount of hot gas which is cooling below ~1 keV is generally more modest than previous estimates. Yet, the real level of the cooling flows, if any, remains to be clarified by making observations sensitive to different temperature ranges. As a follow-up of the FUSE observations reporting a positive detection of the OVI doublet at 1032, 1038 Angstrom in the cluster of galaxies Abell 2597, which provided the first direct evidence for ~3x10^5 K gas in a cluster of galaxies, we have carried out sensitive spectroscopy of two rich clusters, Abell 2029 and Abell 3112 (z~0.07) located behind low HI columns. In neither of these clusters could we detect the OVI doublet, yielding fairly stringent limits of ~27 Msun yr-1 (Abell 2029) and ~25 Msun yr-1 (Abell 3112) to the cooling flow rates using the 10^5-10^6 K gas as a tracer. The non-detections support the emerging picture that the cooling-flow rates are much more modest than deduced from earlier X-ray observations.
The Cosmic Origins Spectrograph (COS) was installed in the Hubble Space Telescope in May, 2009 as part of Servicing Mission 4 to provide high sensitivity, medium and low resolution spectroscopy at far- and near-ultraviolet wavelengths (FUV, NUV). COS is the most sensitive FUV/NUV spectrograph flown to date, spanning the wavelength range from 900{AA} to 3200{AA} with peak effective area approaching 3000 cm^2. This paper describes instrument design, the results of the Servicing Mission Orbital Verification (SMOV), and the ongoing performance monitoring program.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا