Do you want to publish a course? Click here

Observations of Outflowing UV Absorbers in NGC 4051 with the Cosmic Origins Spectrograph

372   0   0.0 ( 0 )
 Added by Steven Kraemer
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new Hubble Space Telescope (HST)/Cosmic Origins Spectrograph observations of the Narrow-Line Seyfert 1 galaxy NGC 4051. These data were obtained as part of a coordinated observing program including X-ray observations with the Chandra/High Energy Transmission Grating (HETG) Spectrometer and Suzaku. We detected nine kinematic components of UV absorption, which were previously identified using the HST/Space Telescope Imaging Spectrograph. None of the absorption components showed evidence for changes in column density or profile within the sim 10 yr between the STIS and COS observations, which we interpret as evidence of 1) saturation, for the stronger components, or 2) very low densities, i.e., n_H < 1 cm^-3, for the weaker components. After applying a +200 km s^-1 offset to the HETG spectrum, we found that the radial velocities of the UV absorbers lay within the O VII profile. Based on photoionization models, we suggest that, while UV components 2, 5 and 7 produce significant O VII absorption, the bulk of the X-ray absorption detected in the HETG analysis occurs in more highly ionized gas. Moreover, the mass loss rate is dominated by high ionization gas which lacks a significant UV footprint.



rate research

Read More

We report on the observed properties of the plasma revealed through high signal-to-noise (S/N) observations of 54 intervening O VI absorption systems containing 85 O VI and 133 H I components in a blind survey of 14 QSOs observed at ~18 km s-1 resolution with the Cosmic Origins Spectrograph (COS) over a redshift path of 3.52 at z < 0.5. Simple systems with one or two H I components and one O VI component comprise 50% of the systems. For a sample of 45 well-aligned absorption components where the temperature can be estimated, we find evidence for cool photoionized gas in 31 (69%) and warm gas (6 > log T > 5) in 14 (31%) of the components. The total hydrogen content of the 14 warm components can be estimated from the temperature and the measured value of log N(H I). The very large implied values of log N(H) range from 18.38 to 20.38 with a median of 19.35. The metallicity, [O/H], in the 6 warm components with log T > 5.45 ranges from -1.93 to 0.03 with a median value of -1.0 dex. Ground-based galaxy redshift studies reveal that most of the absorbers we detect sample gas in the IGM extending 200 to 600 kpc beyond the closest associated galaxy. We estimate the warm aligned O VI absorbers contain (4.1+/-1.1)% of the baryons at low z. The warm plasma traced by the aligned O VI and H I absorption contains nearly as many baryons as are found in galaxies.
The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F_lambda ~ 1.0E10-14 ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.
We present both phenomenological and more physical photoionization models of the Chandra HETG spectra of the Seyfert-1 AGN NGC 4051. We detect 40 absorption and emission lines, encompassing highly ionized charge states from O, Ne, Mg, Si, S and the Fe L-shell and K-shell. Two independent photoionization packages, XSTAR and Cloudy, were both used to self-consistently model the continuum and line spectra. These fits detected three absorbing regions in this system with densities ranging from 10^{10} to 10^{11} cm^{-3}. In particular, our XSTAR models require three components that have ionization parameters of log xi = 4.5, 3.3, & 1.0, and are located within the BLR at 70, 300, and 13,000 R_g, respectively, assuming a constant wind density. Larger radii are inferred for density profiles which decline with radius. The Cloudy models give a similar set of parameters with ionization parameters of log xi = 5.0, 3.6, & 2.2 located at 40, 200, and 3,300 R_g. We demonstrate that these regions are out-flowing from the system, and carry a small fraction of material out of the system relative to the implied mass accretion rate. The data suggest that magnetic fields may be an important driving mechanism.
We present a detection of a broad Ly-alpha absorber (BLA) with a matching O VI line in the nearby universe. The BLA is detected at z = 0.01028 in the high S/N spectrum of Mrk 290 obtained using the Cosmic Origins Spectrograph. The Ly-alpha absorption has two components, with b(HI) = 55 +/- 1 km/s and b(HI) = 33 +/- 1 km/s, separated in velocity by v ~ 115 km/s. The O VI, detected by FUSE at z = 0.01027, has a b(OVI) = 29 +/- 3 km/s and is kinematically well aligned with the broader HI component. The different line widths of the BLA and OVI suggest a temperature of T = 1.4 x 10^5 K in the absorber. The observed line strength ratios and line widths favor an ionization scenario in which both ion-electron collisions and UV photons contribute to the ionization in the gas. Such a model requires a low-metallicity of -1.7 dex, ionization parameter of log U ~ -1.4, a large total hydrogen column density of N(H) ~ 4 x 10^19 cm^-2, and a path length of 400 kpc. The line of sight to Mrk 290 intercepts at the redshift of the absorber, a megaparsec scale filamentary structure extending over 20 deg in the sky, with several luminous galaxies distributed within 1.5 Mpc projected distance from the absorber. The collisionally ionized gas in this absorber is likely tracing a shock-heated gaseous structure, consistent with a few different scenarios for the origin, including an over-dense region of the WHIM in the galaxy filament or highly ionized gas in the extended halo of one of the galaxies in the filament. In general, BLAs with metals provide an efficient means to study T ~ 10^5 - 10^6 K gas in galaxy halos and in the intergalactic medium. A substantial fraction of the baryons missing from the present universe is predicted to be in such environments in the form of highly ionized plasma.
The Cosmic Origins Spectrograph (COS) was installed in the Hubble Space Telescope in May, 2009 as part of Servicing Mission 4 to provide high sensitivity, medium and low resolution spectroscopy at far- and near-ultraviolet wavelengths (FUV, NUV). COS is the most sensitive FUV/NUV spectrograph flown to date, spanning the wavelength range from 900{AA} to 3200{AA} with peak effective area approaching 3000 cm^2. This paper describes instrument design, the results of the Servicing Mission Orbital Verification (SMOV), and the ongoing performance monitoring program.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا