We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio $eta/s$. We also find that a good agreement between these two approaches requires a Knudsen number $Kn < 1/2$.
To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio $eta/s$. We show that an $eta/s$ ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. These findings are confirmed by viscous hydrodynamic calculations.
To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio $eta/s$. Furthermore we compare our results with those obtained by solving the relativistic causal dissipative fluid equations of Israel and Stewart (IS), in order to show the validity of the IS hydrodynamics. Employing the parton cascade we also investigate the formation of Mach shocks induced by a high-energy gluon traversing viscous gluon matter. For $eta/s = 0.08$ a Mach cone structure is observed, whereas the signal smears out for $eta/s geq 0.32$.
We re-derive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast to the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for the dissipative currents, we directly use the latters definition. Although the equations of motion obtained via the two approaches are formally identical, the coefficients are different. We show that, for the one-dimensional scaling expansion, our method is in better agreement with the solution obtained from the Boltzmann equation.
The transport coefficients of causal relativistic dissipative fluid dynamics are calculated both in a field-theoretical and a kinetic approach. We find that the results from the traditional kinetic calculation by Israel and Stewart are modified. The new expressions for the viscous transport coefficients agree with the results obtained in the field-theoretical approach when the contributions from pair creation and annihilation are neglected.
Starting from a microscopic approach, we develop a covariant formalism to describe a set of interacting gases. For that purpose, we model the collision term entering the Boltzmann equation for a class of interactions and then integrate this equation to obtain an effective macroscopic description. This formalism will be useful to study the cosmic microwave background non-perturbatively in inhomogeneous cosmologies. It should also be useful for the study of the dynamics of the early universe and can be applied, if one considers fluids of galaxies, to the study of structure formation.
I. Bouras
,E. Molnar
,H. Niemi
.
(2010)
.
"Investigation of shock waves in the relativistic Riemann problem: A comparison of viscous fluid dynamics to kinetic theory"
.
Ioannis Bouras
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا