No Arabic abstract
The detector for the MiniBooNE experiment at the Fermi National Accelerator Laboratory employs 1520 8 inch Hamamatsu models R1408 and R5912 photomultiplier tubes with custom-designed bases. Tests were performed to determine the dark rate, charge and timing resolutions, double-pulsing rate, and desired operating voltage for each tube, so that the tubes could be sorted for optimal placement in the detector. Seven phototubes were tested to find the angular dependence of their response. After the Super-K phototube implosion accident, an analysis was performed to determine the risk of a similar accident with MiniBooNE.
The Large High-Altitude Air Shower Observatory (LHAASO) is being built at Haizi Mountain, Sichuan province of China at an altitude of 4410 meters. One of its main goals is to survey the northern sky for very-high-energy gamma ray sources via its ground-based water Cherenkov detector array (WCDA). 900 8-inch photomultiplier tubes (PMTs) CR365-02-1 from Beijing Hamamatsu Photon Techniques INC. (BHP) are installed in the WCDA, collecting Cherenkov photons produced by air shower particles crossing water. The design of the PMT base with a high dynamic range for CR365-02-1, the PMT batch test system, and the test results of 997 PMTs are presented in this paper.
Photomultiplier tubes (PMTs) are often used in low-background particle physics experiments, which rely on an excellent response to single-photon signals and stable long-term operation. In particular, the Hamamatsu R11410 model is the light sensor of choice for liquid xenon dark matter experiments, including XENONnT. The same PMT model was also used for the predecessor, XENON1T, where issues affecting its long-term operation were observed. Here, we report on an improved PMT testing procedure which ensures optimal performance in XENONnT. Using both new and upgraded facilities, we tested 368 new PMTs in a cryogenic xenon environment. We developed new tests targeted at the detection of light emission and the degradation of the PMT vacuum through small leaks, which can lead to spurious signals known as afterpulses, both of which were observed in XENON1T. We exclude the use of 26 of the 368 tested PMTs and categorise the remainder according to their performance. Given that we have improved the testing procedure, yet we rejected fewer PMTs, we expect significantly better PMT performance in XENONnT.
The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and is of significant interest for future dark matter and neutrino experiments where high signal yields are needed. We report on the methods developed for in-situ characterization and monitoring of DEAPs 255 R5912-HQE PMTs. This includes a detailed discussion of typical measured single-photoelectron charge distributions, correlated noise (afterpulsing), dark noise, double, and late pulsing characteristics. The characterization is performed during the detector commissioning phase using laser light injected through a light diffusing sphere and during normal detector operation using LED light injected through optical fibres.
The IceCube Collaboration is investigating various types and manufacturers of photomultiplier tubes (PMT) for possible use in future optical modules. This report presents characterization results for two different types of HZC Photonics PMTs: the 3.5 inch XP82B20D and the 9 inch XP1805D. The results are in good agreement with the specifications as provided by the manufacturer. In addition, excellent noise behaviour is observed at the low temperatures relevant for possible use in IceCube optical modules.
A light injection system using LEDs and optical fibres was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. Large volume, non-segmented, low-background detectors for rare event physics, such as the multi-purpose SNO+ experiment, need a calibration system that allow an accurate and regular measurement of the performance parameters of their photomultiplier arrays, while minimising the risk of radioactivity ingress. The design implemented for SNO+ uses a set of optical fibres to inject light pulses from external LEDs into the detector. The design, fabrication and installation of this light injection system, as well as the first commissioning tests, are described in this paper. Monte Carlo simulations were compared with the commissioning test results, confirming that the system meets the performance requirements.