Do you want to publish a course? Click here

Qualification tests of 997 8-inch photomultiplier tubes for the water Cherenkov detector array of the LHAASO experiment

135   0   0.0 ( 0 )
 Added by Kun Jiang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Large High-Altitude Air Shower Observatory (LHAASO) is being built at Haizi Mountain, Sichuan province of China at an altitude of 4410 meters. One of its main goals is to survey the northern sky for very-high-energy gamma ray sources via its ground-based water Cherenkov detector array (WCDA). 900 8-inch photomultiplier tubes (PMTs) CR365-02-1 from Beijing Hamamatsu Photon Techniques INC. (BHP) are installed in the WCDA, collecting Cherenkov photons produced by air shower particles crossing water. The design of the PMT base with a high dynamic range for CR365-02-1, the PMT batch test system, and the test results of 997 PMTs are presented in this paper.

rate research

Read More

A new hybrid experiment has been constructed to measure the chemical composition of cosmic rays around the knee in the wide energy range by the Tibet AS$gamma$ collaboration at Tibet, China, since 2014. They consist of a high-energy air-shower-core array (YAC-II), a high-density air-shower array (Tibet-III) and a large underground water-Cherenkov muon-detector array (MD). In order to obtain the primary proton, helium and iron spectra and their knee positions in the energy range lower than $10^{16}$ eV, each of PMTs equipped to the MD cell is required to measure the number of photons capable of covering a wide dynamic range of 100 - $10^{6}$ photoelectrons (PEs) according to Monte Carlo simulations. In this paper, we firstly compare the characteristic features between R5912-PMT made by Japan Hamamatsu and CR365-PMT made by Beijing Hamamatsu. This is the first comparison between R5912-PMT and CR365-PMT. If there exists no serious difference, we will then add two 8-inch-in-diameter PMTs to meet our requirements in each MD cell, which are responsible for the range of 100 - 10000 PEs and 2000 - 1000000 PEs, respectively. That is, MD cell is expected to be able to measure the number of muons over 6 orders of magnitude.
The Large High Altitude Air Shower Observatory (LHAASO) is planned to be built at Daocheng, Sichuan Province, China. The water Cherenkov detector array (WCDA), with an area of 78,000 m2 and capacity of 350,000 tons of purified water, is one of the major components of the LHAASO project. A 9-cell detector prototype array has been built at the Yangbajing site, Tibet, China to comprehensively understand the water Cherenkov technique and investigate the engineering issues of WCDA. In this paper, the rate and charge distribution of single-channel signals are evaluated using a full detail Monte Carlo simulation. The results are discussed and compared with the prototype array.
Ultra-high-energy ($>$ 100 TeV) gamma-ray detection benefits from the muon detectors (MDs) due to the powerful capability to suppress the cosmic-ray background. More than 1100 8-inch photomultiplier tubes, CR365-02-2 from Beijing Hamamatsu Photon Techniques INC. (BHP), are deployed for the LHAASO-MD experiment. In this paper, the design of the photomultiplier base with a high dynamic range is presented. Signals are extracted from two outputs: the anode and the 7-th dynode. The design ensures a good single photoelectron resolution (peak-to-valley ratio $>$ 2) and a high dynamic range (equivalent anode peak current up to 1600 mA). The anode-to-dynode amplitude ratio is below 160 to ensure enough overlaps between the two outputs.
The detector for the MiniBooNE experiment at the Fermi National Accelerator Laboratory employs 1520 8 inch Hamamatsu models R1408 and R5912 photomultiplier tubes with custom-designed bases. Tests were performed to determine the dark rate, charge and timing resolutions, double-pulsing rate, and desired operating voltage for each tube, so that the tubes could be sorted for optimal placement in the detector. Seven phototubes were tested to find the angular dependence of their response. After the Super-K phototube implosion accident, an analysis was performed to determine the risk of a similar accident with MiniBooNE.
Photomultiplier tubes (PMTs) are often used in low-background particle physics experiments, which rely on an excellent response to single-photon signals and stable long-term operation. In particular, the Hamamatsu R11410 model is the light sensor of choice for liquid xenon dark matter experiments, including XENONnT. The same PMT model was also used for the predecessor, XENON1T, where issues affecting its long-term operation were observed. Here, we report on an improved PMT testing procedure which ensures optimal performance in XENONnT. Using both new and upgraded facilities, we tested 368 new PMTs in a cryogenic xenon environment. We developed new tests targeted at the detection of light emission and the degradation of the PMT vacuum through small leaks, which can lead to spurious signals known as afterpulses, both of which were observed in XENON1T. We exclude the use of 26 of the 368 tested PMTs and categorise the remainder according to their performance. Given that we have improved the testing procedure, yet we rejected fewer PMTs, we expect significantly better PMT performance in XENONnT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا