Do you want to publish a course? Click here

Temporal response of nonequilibrium correlated electrons

201   0   0.0 ( 0 )
 Added by Brian Moritz
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we examine the time-resolved, instantaneous current response for the spinless Falicov-Kimball model at half-filling, on both sides of the Mott-Hubbard metal-insulator transition, driven by a strong electric field pump pulse. The results are obtained using an exact, nonequilibrium, many-body impurity solution specifically designed to treat the out-of-equilibrium evolution of electrons in time-dependent fields. We provide a brief introduction to the method and its computational details. We find that the current develops Bloch oscillations, similar to the case of DC driving fields, with an additional amplitude modulation, characterized by beats and induced by correlation effects. Correlations primarily manifest themselves through an overall reduction in magnitude and shift in the onset time of the current response with increasing interaction strength.



rate research

Read More

We study nonequilibrium thermoelectric transport properties of a correlated impurity connected to two leads for temperatures below the Kondo scale. At finite bias, for which a current flows across the leads, we investigate the differential response of the current to a temperature gradient. In particular, we compare the influence of a bias voltage and of a finite temperature on this thermoelectric response. This is of interest from a fundamental point of view to better understand the two different decoherence mechanisms produced by a bias voltage and by temperature. Our results show that in this respect the thermoelectric response behaves differently from the electric conductance. In particular, while the latter displays a similar qualitative behavior as a function of voltage and temperature, both in theoretical and experimental investigations, qualitative differences occur in the case of the thermoelectric response. In order to understand this effect, we analyze the different contributions in connection to the behavior of the impurity spectral function versus temperature. Especially in the regime of strong interactions and large enough bias voltages we obtain a simple picture based on the asymmetric suppression or enhancement of the split Kondo peaks as a function of the temperature gradient. Besides the academic interest, these studies could additionally provide valuable information to assess the applicability of quantum dot devices as responsive nanoscale temperature sensors.
170 - Jun Goryo , , Nobuki Maeda 2010
We investigate the magnetic response in the quantized spin Hall (SH) phase of layered-honeycomb lattice system with intrinsic spin-orbit coupling lambda_SO and on-site Hubbard U. The response is characterized by a parameter g= 4 U a^2 d / 3, where a and d are the lattice constant and interlayer distance, respectively. When g< (sigma_{xy}^{s2} mu)^{-1}, where sigma_{xy}^{s} is the quantized spin Hall conductivity and mu is the magnetic permeability, the magnetic field inside the sample oscillates spatially. The oscillation vanishes in the non-interacting limit U -> 0. When g > (sigma_{xy}^{s2} mu)^{-1}, the system shows perfect diamagnetism, i.e., the Meissner effect occurs. We find that superlattice structure with large lattice constant is favorable to see these phenomena. We also point out that, as a result of Zeeman coupling, the topologically-protected helical edge states shows weak diamagnetism which is independent of the parameter g.
We define, compute and analyze the nonequilibrium differential optical conductivity of the one-dimensional extended Hubbard model at half-filling after applying a pump pulse, using the time-dependent density matrix renormalization group method. The melting of the Mott insulator is accompanied by a suppression of the local magnetic moment and ensuing photogeneration of doublon-holon pairs. The differential optical conductivity reveals $(i)$ mid-gap states related to parity-forbidden optical states, and $(ii)$ strong renormalization and hybridization of the excitonic resonance and the absorption band, yielding a Fano resonance. We offer evidence and interpret such a resonance as a signature of nonequilibrium optical excitations resembling excitonic strings, (bi)excitons, and unbound doublon-holon pairs, depending on the magnitude of the intersite Coulomb repulsion. We discuss our results in the context of pump and probe spectroscopy experiments on organic Mott insulators.
225 - Jan Kunes 2015
The idea of exciton condensation in solids was introduced in 1960s with the analogy to superconductivity in mind. While exciton supercurrents have been realized only in artificial quantum-well structures so far, the application of the concept of excitonic condensation to bulk solids leads to a rich spectrum of thermodynamic phases with diverse physical properties. In this review we discuss recent developments in the theory of exciton condensation in systems described by Hubbard-type models. In particular, we focus on the connections to their various strong-coupling limits that have been studied in other contexts, e.g., cold atoms physics. One of our goals is to provide a dictionary which would allow the reader to efficiently combine results obtained in these different fields.
68 - K. Byczuk , M. Kollar , K. Held 2006
The properties of condensed matter are determined by single-particle and collective excitations and their interactions. These quantum-mechanical excitations are characterized by an energy E and a momentum hbar k which are related through their dispersion E_k. The coupling of two excitations may lead to abrupt changes (kinks) in the slope of the dispersion. Such kinks thus carry important information about interactions in a many-body system. For example, kinks detected at 40-70 meV below the Fermi level in the electronic dispersion of high-temperature superconductors are taken as evidence for phonon or spin-fluctuation based pairing mechanisms. Kinks in the electronic dispersion at binding energies ranging from 30 to 800 meV are also found in various other metals posing questions about their origins. Here we report a novel, purely electronic mechanism yielding kinks in the electron dispersions. It applies to strongly correlated metals whose spectral function shows well separated Hubbard subbands and central peak as, for example, in transition metal-oxides. The position of the kinks and the energy range of validity of Fermi-liquid (FL) theory is determined solely by the FL renormalization factor and the bare, uncorrelated band structure. Angle-resolved photoemission spectroscopy (ARPES) experiments at binding energies outside the FL regime can thus provide new, previously unexpected information about strongly correlated electronic systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا