No Arabic abstract
We define, compute and analyze the nonequilibrium differential optical conductivity of the one-dimensional extended Hubbard model at half-filling after applying a pump pulse, using the time-dependent density matrix renormalization group method. The melting of the Mott insulator is accompanied by a suppression of the local magnetic moment and ensuing photogeneration of doublon-holon pairs. The differential optical conductivity reveals $(i)$ mid-gap states related to parity-forbidden optical states, and $(ii)$ strong renormalization and hybridization of the excitonic resonance and the absorption band, yielding a Fano resonance. We offer evidence and interpret such a resonance as a signature of nonequilibrium optical excitations resembling excitonic strings, (bi)excitons, and unbound doublon-holon pairs, depending on the magnitude of the intersite Coulomb repulsion. We discuss our results in the context of pump and probe spectroscopy experiments on organic Mott insulators.
We study the nonequilibrium phase diagram of long-lived photo-doped states in the one-dimensional $U$-$V$ Hubbard model, where $eta$-pairing, spin density wave and charge density wave (CDW) phases are found. The photo-doped states are studied using an effective model obtained by a Schrieffer-Wolff transformation combined with separate chemical potentials for the approximately conserved pseudoparticle excitations, leading to a generalized Gibbs ensemble type description. These photo-doped states are characterized by gapless ($eta$-paring) and gapped (CDW) features in the nonequilibrium spectra. For small $V$, the $eta$-pairing correlations dominate over a wide doping range even when the SU$_c(2)$ symmetry that protects $eta$-pairing in the pure Hubbard model is absent. With increasing $V$, the CDW correlations take over in a wide doping range and are strong relative to the chemically doped case. We attribute the strong CDW correlations to the competition between intra- and inter-species repulsion and the one-dimensional configuration. Our results show that photo-doped strongly correlated systems exhibit different phases than conventional semiconductors.
We report strong instantaneous photoinduced absorption (PA) in the quasi-one-dimensional Mott insulator ${rm Sr_2CuO_3}$ in the IR spectral region. The observed PA is to an even-parity two-photon state that occurs immediately above the absorption edge. Theoretical calculations based on a two-band extended Hubbard model explains the experimental features and indicates that the strong two-photon absorption is due to a very large dipole-coupling between nearly degenerate one- and two-photon states. Room temperature picosecond recovery of the optical transparency suggests the strong potential of ${rm Sr_2CuO_3}$ for all-optical switching.
We study the superfluid-Mott-insulator transition of ultracold bosonic atoms in a one-dimensional optical lattice with a double-well confining trap using the density-matrix renormalization group. At low density, the system behaves similarly as two separated ones inside harmonic traps. At high density, however, interesting features appear as the consequence of the quantum tunneling between the two wells and the competition between the superfluid and Mott regions. They are characterized by a rich step-plateau structure in the visibility and the satellite peaks in the momentum distribution function as a function of the on-site repulsion. These novel properties shed light on the understanding of the phase coherence between two coupled condensates and the off-diagonal correlations between the two wells.
We study high-harmonic generation (HHG) in the one-dimensional Hubbard model in order to understand its relation to elementary excitations as well as the similarities and differences to semiconductors. The simulations are based on the infinite time-evolving block decimation (iTEBD) method and exact diagonalization. We clarify that the HHG originates from the doublon-holon recombination, and the scaling of the cutoff frequency is consistent with a linear dependence on the external field. We demonstrate that the subcycle features of the HHG can be reasonably described by a phenomenological three step model for a doublon-holon pair. We argue that the HHG in the one-dimensional Mott insulator is closely related to the dispersion of the doublon-holon pair with respect to its relative momentum, which is not necessarily captured by the single-particle spectrum due to the many-body nature of the elementary excitations. For the comparison to semiconductors, we introduce effective models obtained from the Schrieffer-Wolff transformation, i.e. a strong-coupling expansion, which allows us to disentangle the different processes involved in the Hubbard model: intraband dynamics of doublons and holons, interband dipole excitations, and spin exchanges. These demonstrate the formal similarity of the Mott system to the semiconductor models in the dipole gauge, and reveal that the spin dynamics, which does not directly affect the charge dynamics, can reduce the HHG intensity. We also show that the long-range component of the intraband dipole moment has a substantial effect on the HHG intensity, while the correlated hopping terms for the doublons and holons essentially determine the shape of the HHG spectrum. A new numerical method to evaluate single-particle spectra within the iTEBD method is also introduced.
We calculate the non-equilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to non-interacting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state electronic current through the system. Based on extensive time-dependent density matrix renormalization group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy.